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topological superconductors (Kitaev, 2009, Ryu, et.al. 2009)

Physical systems with dimensions higher than 3, was of great 
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Introduction

Classification of Interacting Topological Insulators with Synthetic Dimensions

Full classification of noninteracting topological insulators and 
topological superconductors (Kitaev, 2009, Ryu, et.al. 2009)

4D quantum Hall realized in the cold atom system (Lohse et al 2018) 
with 2 real and 2 synthetic dimensions. The “crystal momenta” of the 
synthetic dimensions are actually periodic slow tuning parameters.

Physical systems with dimensions higher than 3, was of great 
theoretical interests (only)…



Another 4D toy TI:

Classification of Interacting Topological Insulators with Synthetic Dimensions

Making use of the fact that π4[S2] = π4[Sp(2N)/U(N)] = Z2, one can 
construct a “exotic” 4D TI, with bit “complicated” crystalline 
protecting symmetry. Generalization of the 3D Hopf insulator.

One of the crystal momentum is a periodic tuning parameter.
The 3d edge states with zero energy:



The goal of our work is to study interacting TIs in higher dimensions, 
but some of the dimensions are synthetic dimensions. 

Classification of Interacting Topological Insulators with Synthetic Dimensions

At first glance this does not look different at all from classification of 
interacting TIs, which has been studied a lot in the past years. We 
understand that spatially local interaction can collapse/reduce the 
classification of some TIs. 

class 𝑐𝑐1 class 𝑐𝑐2Zero band gap  

band structure 
parameter

Interaction strength

Adiabatic path

Interaction reduced classification, means two (equivalent?) things: 1, 
the edge states can be trivially gapped by interaction; 2 the bulk 
“topological” transition can be avoided with interaction.



Bulk topological transition

CC-network type of picture of the topological transition. If the 
trivial state and nontrivial state both have no ground state 
degeneracy, the topological transition can be interpreted as network 
of domain wall states.

to > te, trivial to < te, topological

Interaction reduced classification, means two (equivalent?) things: 1, 
the edge states can be trivially gapped by interaction; 2 the bulk 
“topological” transition can be avoided with interaction.



The goal of our work is to study interacting TIs in higher dimensions, 
but some of the dimensions are synthetic dimensions. 

Classification of Interacting Topological Insulators with Synthetic Dimensions

At first glance this does not look different at all from classification of 
interacting TIs, which has been studied a lot in the past years. We 
understand that spatially local interaction can collapse/reduce the 
classification of some TIs. 

class 𝑐𝑐1 class 𝑐𝑐2Zero band gap  

band structure 
parameter

Interaction strength

Adiabatic path

Example: 𝑇𝑇2 = 1 fermions in 1D (BDI class)
Interaction reduction ℤ → ℤ8 Fidkowski & Kitaev, 2009



But interaction in the synthetic dimensions is generically very different 
from ordinary local interactions: it is local in the momentum space, but 
nonlocal in the synthetic spatial dimensions. 

Classification of Interacting Topological Insulators with Synthetic Dimensions

Interaction in total dimension 𝐷𝐷 = 𝑑𝑑 + 𝛿𝛿 generally looks like this:

It is very “nonlocal” in the synthetic dimensional subspace, can we 
analyze this type of interaction?



We consider TI with U(1) symmetries in 𝒅𝒅 real and 𝜹𝜹 synthetic 
dimensions. Define 𝐷𝐷 = 𝑑𝑑 + 𝛿𝛿. Use (𝐷𝐷, 𝛿𝛿) for system dimensionality

• Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 symmetric TI, two copies of class A 

Non-interacting classification: ℤ for even 𝐷𝐷 and 0 for odd 𝐷𝐷

Interaction reduced TI classification at (𝑫𝑫 = 𝟐𝟐𝟐𝟐,𝜹𝜹): ℤ → ℤ𝟐𝟐𝒏𝒏+𝟏𝟏−𝜹𝜹

• 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐𝑻𝑻 symmetric TI, class AIII: 

Non-interacting classification: ℤ for odd 𝐷𝐷 and 0 for even 𝐷𝐷

Interaction reduced TI classification at (𝑫𝑫 = 𝟐𝟐𝟐𝟐 + 𝟏𝟏,𝜹𝜹) : ℤ →
ℤ𝟐𝟐𝒏𝒏+𝟐𝟐−𝜹𝜹

Classification of Interacting Topological Insulators with Synthetic Dimensions

Main results for two example systems:



Example 1: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=2 

• Non-interacting limit:

Two types of fermion with 𝑍𝑍2 charges +/−, each type has a Chern number

Total Chern number 0, ℤ-classification
𝐶𝐶 = 1

𝐶𝐶 = −1

• Helical boundary/edge: 𝐻𝐻 = ∫𝑑𝑑𝑑𝑑 𝜓𝜓𝐿𝐿
†𝜕𝜕𝑥𝑥𝜓𝜓𝐿𝐿 − 𝜓𝜓𝑅𝑅

†𝜕𝜕𝑥𝑥𝜓𝜓𝑅𝑅

𝑘𝑘𝑥𝑥

𝐸𝐸

No bilinear mass allowed:
S.C. breaks 𝑈𝑈(1). Left-right mixing breaks 𝑍𝑍2

ℤ-classification for non-interacting systems 

𝑍𝑍2 ∶ 𝜓𝜓𝐿𝐿 → 𝜓𝜓𝐿𝐿 , 𝜓𝜓𝑅𝑅 → −𝜓𝜓𝑅𝑅

“Elementary state”: “𝐶𝐶 = ± 1 bilayer”



𝑫𝑫 = 𝟐𝟐 and 𝜹𝜹 = 𝟎𝟎 (no synthetic dimensions): reduction ℤ → ℤ𝟒𝟒

𝐶𝐶 = 1

𝐶𝐶 = −1

2 × (𝑝𝑝 + 𝑖𝑖𝑖𝑖)

2 × (𝑝𝑝 − 𝑖𝑖𝑖𝑖)

𝑈𝑈(1) = 𝑆𝑆𝑆𝑆(2) rotates the 2 copies

• A single copy of “𝑝𝑝 ± 𝑖𝑖𝑖𝑖 bilayer” is a 𝑍𝑍2 symmetry non-chiral TSC (with 
ℤ8 classification). 8 ×“𝑝𝑝 ± 𝑖𝑖𝑖𝑖 bilayer” is trivial Gu & Levin, 2014, 

and many others
• “𝐶𝐶 = ±4 bilayer” is trivial. 

The interacting 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at (𝑫𝑫,𝜹𝜹) = (𝟐𝟐,𝟎𝟎) has a ℤ𝟒𝟒 classification.  

Example 1: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=2 



𝑫𝑫 = 𝟐𝟐 and 𝜹𝜹 = 𝟏𝟏: reduction ℤ → ℤ𝟐𝟐

• One copy of “helical” edge state with synthetic momentum 𝑝𝑝

𝐻𝐻 𝑝𝑝 = 𝑣𝑣𝑣𝑣 𝜓𝜓𝐿𝐿
†𝜓𝜓𝐿𝐿 − 𝜓𝜓𝑅𝑅

†𝜓𝜓𝑅𝑅 + 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝)

Level crossing at 𝑝𝑝 = 0 without 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝).  

Many-body ground states have different 𝑍𝑍2 charges for 𝑝𝑝 > 0 and 𝑝𝑝 < 0.
Level crossing is inevitable even with 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝).

• Two copies: many-body ground state always have trivial 𝑍𝑍2 charge.
Avoided crossing is allowed!

with 𝑆𝑆+ ≡ 𝜓𝜓1𝐿𝐿
† ,𝜓𝜓2𝑅𝑅

† 𝜎⃑𝜎 𝜓𝜓1𝐿𝐿
𝜓𝜓2𝑅𝑅

, 𝑆𝑆− ≡ 𝜓𝜓2𝐿𝐿
† ,𝜓𝜓1𝑅𝑅

† 𝜎⃑𝜎 𝜓𝜓2𝐿𝐿
𝜓𝜓1𝑅𝑅

Example: 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝 = 𝑆𝑆+ ⋅ 𝑆𝑆−

𝑝𝑝

Single-particle 𝐸𝐸

𝐿𝐿𝑅𝑅

Example 1: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=2 



𝑫𝑫 = 𝟐𝟐 and 𝜹𝜹 = 𝟏𝟏: reduction ℤ → ℤ𝟐𝟐

• One copy of “helical” edge state with synthetic momentum 𝑝𝑝

𝐻𝐻 𝑝𝑝 = 𝑣𝑣𝑣𝑣 𝜓𝜓𝐿𝐿
†𝜓𝜓𝐿𝐿 − 𝜓𝜓𝑅𝑅

†𝜓𝜓𝑅𝑅 + 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝)

Level crossing at 𝑝𝑝 = 0 without 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝).  

Many-body ground states have different 𝑍𝑍2 charges for 𝑝𝑝 > 0 and 𝑝𝑝 < 0.
Level crossing is inevitable even with 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖(𝑝𝑝).

• Two copies: many-body ground state always have trivial 𝑍𝑍2 charge.
Avoided crossing is allowed!

𝐿𝐿𝑅𝑅

Example 1: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=2 

𝑈𝑈 1 × 𝑍𝑍2 TI at 𝐷𝐷 = 2
(𝐷𝐷, 𝛿𝛿) (2,0) (2,1)

Classification ℤ𝟒𝟒 ℤ𝟐𝟐



• Non-interacting limit:

Two types of fermion with 𝑍𝑍2 charges +/−, each type has a 2nd Chern
number 𝐶𝐶2

Total 2nd Chern number 0, ℤ-classification

• Elementary state: “𝐶𝐶2 = ±1 4D Quantum Hall bilayer”

• “3D helical boundary”: 𝐻𝐻 = ∫𝑑𝑑3𝑥𝑥 𝜓𝜓𝐿𝐿
† 𝜎⃑𝜎 ⋅ 𝑖𝑖𝜕𝜕𝜓𝜓𝐿𝐿 − 𝜓𝜓𝑅𝑅

†𝜎⃑𝜎 ⋅ 𝑖𝑖𝜕𝜕𝜓𝜓𝑅𝑅

No bilinear mass allowed: S.C. breaks 𝑈𝑈(1). Left-right mixing breaks 𝑍𝑍2

ℤ-classification for non-interacting systems 

𝑍𝑍2 ∶ 𝜓𝜓𝐿𝐿 → 𝜓𝜓𝐿𝐿 , 𝜓𝜓𝑅𝑅 → −𝜓𝜓𝑅𝑅 𝑈𝑈(1) ∶ 𝜓𝜓𝐿𝐿/𝑅𝑅 → 𝑒𝑒𝑖𝑖𝑖𝑖𝜓𝜓𝐿𝐿/𝑅𝑅

Example 2: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=4 



Interaction classification at 𝑫𝑫 = 𝟒𝟒,𝜹𝜹 = 𝟎𝟎 : ℤ → ℤ𝟖𝟖

• Consider gapping boundary state by breaking 𝑈𝑈(1) on the boundary
(with S.C.) and restoring it by proliferating 𝑈𝑈(1) vortex lines

• 𝑈𝑈(1) vortex line carries 1D helical Majorana modes

𝐻𝐻 = �𝑑𝑑𝑑𝑑 𝜒𝜒𝐿𝐿𝜕𝜕𝑥𝑥𝜒𝜒𝐿𝐿 − 𝜒𝜒𝑅𝑅𝜕𝜕𝑥𝑥𝜒𝜒𝑅𝑅

with 𝑍𝑍2 ∶ 𝜒𝜒𝐿𝐿 → 𝜒𝜒𝐿𝐿 , 𝜒𝜒𝑅𝑅 → −𝜒𝜒𝑅𝑅, similar to the edge of the “𝑝𝑝 ± 𝑖𝑖𝑖𝑖 bilayer” 

Example 2: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=4 



Interaction classification at 𝑫𝑫 = 𝟒𝟒,𝜹𝜹 = 𝟎𝟎 : ℤ → ℤ𝟖𝟖

• Consider gapping boundary state by breaking 𝑈𝑈(1) on the boundary
(with S.C.) and restoring it by proliferating 𝑈𝑈(1) vortex lines

• 𝑈𝑈(1) vortex line carries 1D helical Majorana modes

𝐻𝐻 = �𝑑𝑑𝑑𝑑 𝜒𝜒𝐿𝐿𝜕𝜕𝑥𝑥𝜒𝜒𝐿𝐿 − 𝜒𝜒𝑅𝑅𝜕𝜕𝑥𝑥𝜒𝜒𝑅𝑅

with 𝑍𝑍2 ∶ 𝜒𝜒𝐿𝐿 → 𝜒𝜒𝐿𝐿 , 𝜒𝜒𝑅𝑅 → −𝜒𝜒𝑅𝑅, similar to the edge of the “𝑝𝑝 ± 𝑖𝑖𝑖𝑖 bilayer” 

• 𝑈𝑈(1) vortex line can be gapped out with 8 copies of helical Majorana modes

The interacting 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at 𝑫𝑫,𝜹𝜹 = (𝟒𝟒,𝟎𝟎): ℤ𝟖𝟖 classification

Example 2: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=4 



Interaction classification at 𝑫𝑫 = 𝟒𝟒,𝜹𝜹 = 𝟏𝟏 : ℤ → ℤ𝟒𝟒

𝐻𝐻 = �𝑑𝑑2𝑥𝑥 𝜓𝜓𝐿𝐿
† 𝜎𝜎𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑝𝑝 𝜓𝜓𝐿𝐿 − 𝜓𝜓𝑅𝑅

† 𝜎𝜎𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥 + 𝜎𝜎𝑦𝑦𝑖𝑖𝜕𝜕𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑝𝑝 𝜓𝜓𝑅𝑅

• Boundary state (with 1 synthetic momentum 𝑝𝑝):

• Same theory for 𝑈𝑈 1 × 𝑍𝑍2 TI-to-trivial-insulator transition in
𝑫𝑫′,𝜹𝜹′ = (𝟐𝟐,𝟎𝟎) with 𝑝𝑝 as the tuning parameter:

“𝐶𝐶 = ±1 bilayer” in 𝐷𝐷 = 2 Trivial insulator

• Level crossing inevitable for one copy, but can be avoided with 4
copies, since the classification at 𝐷𝐷′, 𝛿𝛿′ = (2,0) is ℤ4.

𝑝𝑝
𝑝𝑝 = 0

• 𝐻𝐻𝑖𝑖𝑖𝑖𝑖𝑖 𝑝𝑝 that lifts the level crossing can be written down (for 4 copies).

Example 2: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=4 



Interaction classification at 𝑫𝑫 = 𝟒𝟒,𝜹𝜹 = 𝟐𝟐 : ℤ → ℤ𝟐𝟐

𝐻𝐻 = �𝑑𝑑𝑥𝑥 𝜓𝜓𝐿𝐿
† 𝜎𝜎𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥 − 𝜎𝜎𝑦𝑦𝑝𝑝𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑝𝑝𝑧𝑧 𝜓𝜓𝐿𝐿 − 𝜓𝜓𝑅𝑅

† 𝜎𝜎𝑥𝑥𝑖𝑖𝜕𝜕𝑥𝑥 − 𝜎𝜎𝑦𝑦𝑝𝑝𝑦𝑦 − 𝜎𝜎𝑧𝑧𝑝𝑝𝑧𝑧 𝜓𝜓𝑅𝑅

• Boundary state (with 2 synthetic momentum 𝑝𝑝𝑦𝑦 and 𝑝𝑝𝑧𝑧):

• 𝑈𝑈 1 × 𝑍𝑍2 TI-trivial-insulator transition in 𝑫𝑫′,𝜹𝜹′ = (𝟐𝟐,𝟏𝟏):

• Level crossing inevitable for one copy, but can be avoided with 2
copies

The interacting 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at (𝑫𝑫,𝜹𝜹) = (𝟒𝟒,𝟐𝟐) : ℤ𝟐𝟐 classification

𝑝𝑝𝑧𝑧 as the tuning parameter for the phase transition and 𝑝𝑝𝑦𝑦 still as 
synthetic momentum

Example 2: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=4 



• Non-interacting classification at 𝐷𝐷 = 4: ℤ

• The interacting 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI classification at 𝑫𝑫 = 𝟒𝟒 :

𝑈𝑈 1 × 𝑍𝑍2 TI at 𝐷𝐷 = 4
(𝐷𝐷, 𝛿𝛿) (4,0) (4,1) (4,2)

Classification ℤ𝟖𝟖 ℤ𝟒𝟒 ℤ𝟐𝟐

• Compare to 𝑫𝑫 = 𝟐𝟐 :

𝑈𝑈 1 × 𝑍𝑍2 TI at 𝐷𝐷 = 2
(𝐷𝐷, 𝛿𝛿) (2,0) (2,1)

Classification ℤ𝟒𝟒 ℤ𝟐𝟐

Dimensional 
reduction

Example 2: Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at D=4 



• Chain rule: For 𝛿𝛿 ≥ 1, dimensional reduction from 𝐷𝐷 = 2𝑛𝑛 to 𝐷𝐷𝐷 =
2𝑛𝑛 − 2

𝑫𝑫 = 𝟐𝟐𝟐𝟐,𝜹𝜹 ~ 𝑫𝑫′,𝜹𝜹′ = 𝟐𝟐𝒏𝒏 − 𝟐𝟐,𝜹𝜹 − 𝟏𝟏

• Non-interacting classification at 𝐷𝐷 = 2𝑛𝑛: ℤ

• “ 𝐷𝐷 − 1 -dimensional helical boundary state”: 𝑘𝑘 copies of left-handed
Weyl fermions 𝜓𝜓𝐿𝐿 and 𝑘𝑘 copies of right-handed Weyl fermions 𝜓𝜓𝑅𝑅

• For (𝐷𝐷, 𝛿𝛿) = (2𝑛𝑛, 0), interaction can trivialize edges state with 𝑘𝑘 = 2𝑛𝑛+1
copies. The classification at (𝑫𝑫,𝜹𝜹) = 𝟐𝟐𝟐𝟐,𝟎𝟎 is ℤ𝟐𝟐𝒏𝒏+𝟏𝟏

The interacting 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at (𝑫𝑫 = 𝟐𝟐𝟐𝟐,𝜹𝜹): ℤ𝟐𝟐𝒏𝒏+𝟏𝟏−𝜹𝜹 classification

Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at general D=2n 



𝒌𝒌 = 𝟐𝟐𝒏𝒏+𝟏𝟏 copies of edge states trivial for (𝑫𝑫,𝜹𝜹) = (𝟐𝟐𝟐𝟐,𝟎𝟎)

• First consider 2𝑛𝑛 copy, write the boundary state in terms of Majorana
fermions

• Couple the Majorana fermion to a 𝑂𝑂(2𝑛𝑛 + 2) mass vector 𝑣𝑣𝑖𝑖
𝑍𝑍2: 𝑣𝑣𝑖𝑖 → −𝑣𝑣𝑖𝑖 𝑈𝑈 1 : 𝑣𝑣1 + 𝑖𝑖𝑣𝑣2 → 𝑒𝑒𝑖𝑖𝑖𝑖(𝑣𝑣1 + 𝑖𝑖𝑣𝑣2)

• Fermions gapped out by 𝑣𝑣𝑖𝑖. Effective action of 𝑣𝑣𝑖𝑖 is an 𝑂𝑂(2𝑛𝑛 + 2) WZW
terms at level 1, which is identified as the boundary theory a 𝑈𝑈 1 × 𝑍𝑍2
bosonic SPT at 𝐷𝐷 = 2𝑛𝑛.

• Such bosonic SPT has ℤ2 classification, 2 copies of its edge state is trivial

Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 TI at general D=2n 



Summary and Outlook

• Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐 symmetric TI, two copies of class A: 

Non-interacting classification: ℤ for even 𝐷𝐷 and 0 for odd 𝐷𝐷

Interaction reduced TI classification at (𝑫𝑫 = 𝟐𝟐𝟐𝟐,𝜹𝜹): ℤ → ℤ𝟐𝟐𝒏𝒏+𝟏𝟏−𝜹𝜹

• Non-chiral 𝑼𝑼 𝟏𝟏 × 𝒁𝒁𝟐𝟐𝑻𝑻 symmetric TI, class AIII: 

Non-interacting classification: ℤ for odd 𝐷𝐷 and 0 for even 𝐷𝐷

Interaction reduced TI classification at (𝑫𝑫 = 𝟐𝟐𝟐𝟐 + 𝟏𝟏,𝜹𝜹) : ℤ →
ℤ𝟐𝟐𝒏𝒏+𝟐𝟐−𝜹𝜹

Chao-Ming Jian and Cenke Xu, arXiv: 1804.03658

More exotic topological orders can potentially be realized. 
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