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Topological quantum order

Topological quantum order in condensed matter in three dates

1989: High-Tc superconductors, FQHE (X.-G. Wen, F. Wilczek, and A. Zee)

1997: Fault-tolerant quantum computation (A. Kitaev, J. Preskill)

2005: String-net condensation (M. Levin and X.-G. Wen)

Courtesy of X.-G.Wen
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Topological quantum order in condensed matter in three dates

1989: High-Tc superconductors, FQHE (X.-G. Wen, F. Wilczek, and A. Zee)

1997: Fault-tolerant quantum computation (A. Kitaev, J. Preskill)

2005: String-net condensation (M. Levin and X.-G. Wen)

Main features of topologically ordered systems

2D gapped quantum systems at T = 0 with:

Ground-state degeneracy depends on the system topology

Anyonic excitations

Long-range entanglement

Robustness against local perturbations
S. Bravyi, M. B. Hastings, and S. Michalakis, J. Math. Phys. 51, 093512 (2010)



Topological quantum order

However, as early noticed...

“Of course, the perturbation should be small enough, or else a phase transition
may occur.” A. Kitaev, Ann. Phys. 303, 2 (2003)

Condensed-matter issues

Nature of phase transitions

New universality classes

Low-energy excitations

Strategy

1 Start from a topological (deconfined) phase

2 Add a perturbation (string tension) → Confined phase

3 Compute the low-energy spectrum
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String nets with tension

Basics

String nets = Networks of strings

”...topological phases originate from string-net condensation.”
M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005)

Vacuum of a topological phase = String-net condensate + Local constraints

“Dancing patterns”
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Vacuum of a topological phase = String-net condensate + Local constraints

“Dancing patterns”

Example: the ground state of the toric code

= + + + +...

Equal-weight superposition of all possible “loop” configurations



String nets with tension

Basics

String nets = Networks of strings

”...topological phases originate from string-net condensation.”
M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005)

Vacuum of a topological phase = String-net condensate + Local constraints

“Dancing patterns”

String-net model: input data

Degrees of freedom are strings defined on links of a graph

Strings are anyons (a.k.a. labels, charges, superselection sectors, particles...)

Anyons obey fusion rules: a× b =
∑

c N
ab
c c

S-matrix, F -symbols, R-symbols (Unitary Modular Tensor Category)



String nets with tension

Hilbert space and string-net Hamiltonian

Hilbert space: set of configurations respecting fusion rules at each vertex

Hamiltonian defined on a trivalent graph (e.g., honeycomb lattice or ladder)

HSN = −
∑

p Bp−
∑

v Av

Bp: projector onto the flux-free state in plaquette p

Bp f
β

γ

d

c

δ

ζ

ε

α

e

ba

=
∑

s
ds
D2

∑′
F aζα
sα′ζ′ F

bαβ
sβ′α′ F

cβγ
sγ′β′ F

dγδ
sδ′γ′ F eδε

sε′δ′ F
f εζ
sζ′ε′ ε′

d

c

e

ba

f

α′

ζ ′

δ′

β′

γ′

ds : quantum dimension of the string s

D =
√∑

s d
2
s : total quantum dimension

Remark: ds
D2 = S11S1s but nontrivial Frobenius-Schur indicator matters !

M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005)



String nets with tension

The flux picture

Ground state: Bp|ψ0〉 = +|ψ0〉 → No flux in plaquette p

Excited states: Bp|ψexc.〉 = 0 → Non-trivial flux in plaquette p
F. J. Burnell and S. H. Simon, Ann. Phys. 325, 2550 (2010); S. H. Simon and P. Fendley, J. Phys. A 46, 105002 (2013)

Excited states are closed flux lines piercing plaquettes

Doubled achiral topological deconfined phase

How to measure a flux ?

Probing a flux ⇔ Insert a loop around a flux (Aharonov-Bohm effect)

Projector onto a given flux ⇔ Combination of loop operators
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String nets with tension

The simplest Abelian case: the semion theory

Two strings: {1, s}

Fusion rules: 1× 1 = 1, 1× s = s, s × s = 1

|1〉

|s〉

Hilbert space for any graph with Nv trivalent vertices

Dim H = 2
Nv

2 +1



String nets with tension

Ground state of the semion theory (loop theory)

∝

1

(−1)

1

+

+(−1)

+...

+...

Weight of a configuration = (−1)#loops



String nets with tension

The simplest non-Abelian case: the Fibonacci theory

Two strings: {1, τ}

Fusion rules: 1× 1 = 1, 1× τ = τ , τ × τ = 1 + τ

|1〉

|τ〉

Hilbert space for any graph with Nv trivalent vertices

Dim H = (1 + ϕ2)
Nv

2 + (1 + ϕ−2)
Nv

2 with ϕ = 1+
√

5
2 (golden ratio)



String nets with tension

Ground state of the Fibonacci theory

∝

1

dτ

d2
τ

+

+ dτ

+ d
3
2
τ

+...

+...

dτ = ϕ is the quantum dimension of the string τ



String nets with tension

Strategy

1 Start from a topological (deconfined) phase

2 Add a perturbation (string tension) → Confined phase

3 Compute the low-energy spectrum



String nets with tension

A simple local perturbation ∼ string tension

Projector onto the flux-free state in the links: V =
∑
` δ`,1 =

∑
` C`

Diagonal in the link basis but nontrivial in the flux basis

[Bp,C`] 6= 0 → V creates fluxes in plaquettes

V generates dynamics and interactions between fluxes



String nets with tension

A simple local perturbation ∼ string tension

Projector onto the flux-free state in the links: V =
∑
` δ`,1 =

∑
` C`

Diagonal in the link basis but nontrivial in the flux basis

[Bp,C`] 6= 0 → V creates fluxes in plaquettes

V generates dynamics and interactions between fluxes



String nets with tension

A simple local perturbation ∼ string tension

Projector onto the flux-free state in the links: V =
∑
` δ`,1 =

∑
` C`

Diagonal in the link basis but nontrivial in the flux basis

[Bp,C`] 6= 0 → V creates fluxes in plaquettes

V generates dynamics and interactions between fluxes



String nets with tension

The model

H = − cos θ
∑

p Bp − sin θ
∑
` C`

Bp = Projector onto the flux-free state in the plaquette p

C` = Projector onto the flux-free state in the link `



String nets with tension

The model

H = − cos θ
∑

p Bp − sin θ
∑
` C`

Bp = Projector onto the flux-free state in the plaquette p

C` = Projector onto the flux-free state in the link `

The ladder

Exact mapping onto transverse-field D2-state Potts model (1+1)

D 6 2: 2nd-order transitions described by CFT
C. Gils, S. Trebst, A. Kitaev, A. W. W. Ludwig, M. Troyer, and Z. Wang, Nat. Phys. 5, 834 (2009)

C. Gils, J. Stat. Mech. P07019 (2009)

E. Ardonne, J. Gukelberger, A. W.W. Ludwig, S. Trebst, M. Troyer, New J. Phys. 13, 045006 (2011)

D > 2: 1st-order transitions
M. D. Schulz, S. Dusuel, and J. Vidal, Phys. Rev. B 91, 155110 (2015)



String nets with tension

The model

H = − cos θ
∑

p Bp − sin θ
∑
` C`

Bp = Projector onto the flux-free state in the plaquette p

C` = Projector onto the flux-free state in the link `

The honeycomb lattice

Abelian theories ∼ transverse-field D2-state Potts model (2+1)
F. J. Burnell, S. H. Simon, J. K. Slingerland, Phys. Rev. B 84, 125434 (2011)

Non-Abelian theories ?

Tools: High-order perturbation theory, mean field, exact diagonalizations

M. D. Schulz, S. Dusuel, K. P. Schmidt, and J. Vidal, Phys. Rev. Lett. 110, 147203 (2013)

M. D. Schulz, S. Dusuel, G. Misguich, K. P. Schmidt, and J. Vidal, Phys. Rev. B 89, 201103(R) (2014)

S. Dusuel, and J. Vidal, Phys. Rev. B 91, 155110 (2015)



String nets with tension

The model

H = − cos θ
∑

p Bp − sin θ
∑
` C`

Bp = Projector onto the flux-free state in the plaquette p

C` = Projector onto the flux-free state in the link `

Non-Abelian theories with N strings on a genus g surface

θ = 0: No flux in the plaquette (degeneracy genus- and theory-dependent)

θ = π/2: No flux in the links (degeneracy = 1)

θ = π: One flux in each plaquette (degeneracy =∞)

θ = 3π/2: One flux in each link (degeneracy =∞ for N > 2)



Fibonacci theory s = 1, τ

Ground-state energy per plaquette vs θ
ED with Np = 13 on a torus
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Fibonacci theory s = 1, τ

Ground-state energy per plaquette vs θ
ED for Np = 13 on a torus + Series near θ = 0 (order 1 to 11)
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Fibonacci theory s = 1, τ

Ground-state energy per plaquette vs θ
ED with Np = 13 on a torus + Series near θ = 0 (order 1 to 11) + Series near θ = π/2 (order 1 to 20)
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Fibonacci theory s = 1, τ

Ground-state energy per plaquette vs θ
ED with Np = 13 on a torus + Series near θ = 0 (order 1 to 11) + Series near θ = π/2 (order 1 to 20)+ Mean field
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Fibonacci theory s = 1, τ

Excitation spectrum vs θ
ED with Np = 13 on a torus
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Fibonacci theory s = 1, τ

Excitation spectrum vs θ
ED for Np = 13 on a torus + Series near θ = 0 (order 1 to 10)
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Fibonacci theory s = 1, τ

Excitation spectrum vs θ
ED with Np = 13 on a torus + Series near θ = 0 (order 1 to 10) + Series near θ = π/2 (order 1 to 11)
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String nets with tension

Phase diagrams for different theories

Top. phase
DFib

Trivial phase
|ψ0〉 = ⊗|1〉

Trivial phase
|ψ0〉 = ⊗|τ〉

↓

↑

Top. phase
DIsing

Trivial phase
|ψ0〉 = ⊗|1〉

Effective QDM
↓

↑

?
Top. phase
D(A1, 5)1/2

Trivial phase
|ψ0〉 = ⊗|1〉

↑

?

Fibonacci Ising SU(2)5

s = 1, τ s = 1, σ, ψ s = 1, α, β

Nature of transitions still unknown !
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Bound states

Bound states and quantum phase transitions

No bound state ⇒ 2nd-order transition ? Yes !
Ex: 2 6 q 6 3-state Potts model in (1+1) dimensions

Bound states ⇒ 1st-order transition ? No !
Ex: 3 < q 6 4-state Potts model in (1+1) dimensions
∗P. Dorey, A. Pocklington, and R. Tateo, Nucl. Phys. B 661, 425 (2003)

1st-order transition ⇒ Bound states ? Yes ! (in general...)
Ex: 4 < q-state Potts model in (1+1) dimensions

Role of the string tension

Dynamics + interaction between fluxes

Anyonic bound states ?

M. D. Schulz, S. Dusuel, and J. Vidal, Phys. Rev. B 94, 205102 (2016)
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Bound states

Two-flux excited state
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Two-flux excited state + Perturbation



Bound states

Two-flux excited states + Perturbation

Flux hopping Flux creation↓ ↓

Fibonacci fusion rules: τ × τ = 1 + τ



Bound states

Two-flux excited state + Perturbation

Interaction Flux destruction↓ ↓

Fibonacci fusion rules: τ × τ = 1 + τ



Bound states

Results valid for any (modular) theory

Perturbative approach in the limit θ � 1:

Ladder : 1 Bound state for 3 < D2

Honeycomb: 1 Bound state for 2 < D2 < D2
c

3 Bound states for D2
c < D2

“Critical” total quantum dimension Dc ' 3.87145 +O(θ2)
M. D. Schulz, S. Dusuel, and J. Vidal, Phys. Rev. B 94, 205102 (2016)
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K = 0

|ψ(r)|2 ∼ e−r/ξ
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Outlook

Take-home messages and perspectives

String-nets can describe many topological phases

Confinement-deconfinement transitions are induced by string tensions

Tensor networks approach (perturbative PEPS)

Transitions between compatible topological phases (same fusion rules)

New universality classes in two dimensions to be unveiled
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