Phase transitions in string nets

Julien Vidal

Laboratoire de Physique Théorique de la Matière Condensée Sorbonne Université, CNRS, Paris

Collaboration: S. Dusuel, G. Misguich, K. P. Schmidt, and M. D. Schulz

2 String nets with tension

3 Bound states

2 String nets with tension

3 Bound states

Topological quantum order in condensed matter in three dates

- 1989: High- $T_{\rm c}$ superconductors, FQHE (X.-G. Wen, F. Wilczek, and A. Zee)
- 1997: Fault-tolerant quantum computation (A. Kitaev, J. Preskill)
- 2005: String-net condensation (M. Levin and X.-G. Wen)

Topological quantum order in condensed matter in three dates

- 1989: High- $T_{\rm c}$ superconductors, FQHE (X.-G. Wen, F. Wilczek, and A. Zee)
- 1997: Fault-tolerant quantum computation (A. Kitaev, J. Preskill)
- 2005: String-net condensation (M. Levin and X.-G. Wen)

Main features of topologically ordered systems

2D gapped quantum systems at T = 0 with:

- Ground-state degeneracy depends on the system topology
- Anyonic excitations
- Long-range entanglement
- Robustness against local perturbations

S. Bravyi, M. B. Hastings, and S. Michalakis, J. Math. Phys. 51, 093512 (2010)

However, as early noticed...

"Of course, the perturbation should be small enough, or else a phase transition may occur." A. Kitaev, Ann. Phys. **303**, 2 (2003)

However, as early noticed...

"Of course, the perturbation should be small enough, or else a phase transition may occur." A. Kitaev, Ann. Phys. **303**, 2 (2003)

Condensed-matter issues

- Nature of phase transitions
- New universality classes
- Low-energy excitations

However, as early noticed...

"Of course, the perturbation should be small enough, or else a phase transition may occur." A. Kitaev, Ann. Phys. **303**, 2 (2003)

Condensed-matter issues

- Nature of phase transitions
- New universality classes
- Low-energy excitations

Strategy

- Start from a topological (deconfined) phase
- 2 Add a perturbation (string tension) \rightarrow Confined phase
- Ompute the low-energy spectrum

2 String nets with tension

3 Bound states

Basics

- String nets = Networks of strings
- "...topological phases originate from string-net condensation."

M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005)

• Vacuum of a topological phase = String-net condensate + Local constraints

"Dancing patterns"

Basics

- String nets = Networks of strings
- "...topological phases originate from string-net condensation."

M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005)

• Vacuum of a topological phase = String-net condensate + Local constraints

"Dancing patterns"

Example: the ground state of the toric code

Equal-weight superposition of all possible "loop" configurations

Basics

- String nets = Networks of strings
- "...topological phases originate from string-net condensation."

```
M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005)
```

 $\bullet~$ Vacuum of a topological phase = String-net condensate + Local constraints

"Dancing patterns"

String-net model: input data

- Degrees of freedom are strings defined on links of a graph
- Strings are anyons (a.k.a. labels, charges, superselection sectors, particles...)
- Anyons obey fusion rules: $a \times b = \sum_{c} N_{c}^{ab} c$
- S-matrix, F-symbols, R-symbols (Unitary Modular Tensor Category)

Hilbert space and string-net Hamiltonian

- Hilbert space: set of configurations respecting fusion rules at each vertex
- Hamiltonian defined on a trivalent graph (e.g., honeycomb lattice or ladder)

$$H_{SN} = -\sum_{p} B_{p} - \sum_{v} A_{v}$$

• B_p: projector onto the flux-free state in plaquette p

$$B_{p} \xrightarrow{f \to a}_{s \to b} f = \sum_{s} \frac{d_{s}}{D^{2}} \sum_{s \to a'\zeta'} F_{s\alpha'\zeta'}^{a\zeta\alpha} F_{s\beta'\alpha'}^{b\alpha\beta} F_{s\gamma'\beta'}^{c\beta\gamma} F_{s\delta'\gamma'}^{d\gamma\delta} F_{s\epsilon'\delta'}^{e\delta\epsilon} F_{s\zeta'\epsilon'}^{f\epsilon\zeta}$$

- *d_s*: quantum dimension of the string *s*
- $D = \sqrt{\sum_{s} d_{s}^{2}}$: total quantum dimension
- Remark: $\frac{d_s}{D^2} = S_{11}S_{1s}$ but nontrivial Frobenius-Schur indicator matters !

M. Levin and X.-G. Wen, Phys. Rev. B 71, 045110 (2005)

- Ground state: $B_p |\psi_0
 angle = + |\psi_0
 angle o$ No flux in plaquette p
- Excited states: $B_p |\psi_{\text{exc.}}\rangle = 0 \rightarrow \text{Non-trivial flux in plaquette } p$ F. J. Burnell and S. H. Simon, Ann. Phys. **325**, 2550 (2010); S. H. Simon and P. Fendley, J. Phys. A **46**, 105002 (2013)
- Excited states are closed flux lines piercing plaquettes
- Doubled achiral topological deconfined phase

The flux picture

- Ground state: $B_p |\psi_0
 angle = +|\psi_0
 angle o$ No flux in plaquette p
- Excited states: $B_p |\psi_{\text{exc.}}\rangle = 0 \rightarrow \text{Non-trivial flux in plaquette } p$ F. J. Burnell and S. H. Simon, Ann. Phys. **325**, 2550 (2010); S. H. Simon and P. Fendley, J. Phys. A **46**, 105002 (2013)
- Excited states are closed flux lines piercing plaquettes
- Doubled achiral topological deconfined phase

How to measure a flux ?

- Probing a flux ⇔ Insert a loop around a flux (Aharonov-Bohm effect)
- Projector onto a given flux \Leftrightarrow Combination of loop operators

- Ground state: $B_p |\psi_0
 angle = +|\psi_0
 angle o$ No flux in plaquette p
- Excited states: $B_p |\psi_{\text{exc.}}\rangle = 0 \rightarrow \text{Non-trivial flux in plaquette } p$ F. J. Burnell and S. H. Simon, Ann. Phys. **325**, 2550 (2010); S. H. Simon and P. Fendley, J. Phys. A **46**, 105002 (2013)
- Excited states are closed flux lines piercing plaquettes
- Doubled achiral topological deconfined phase

- Ground state: $B_p |\psi_0
 angle = +|\psi_0
 angle o$ No flux in plaquette p
- Excited states: $B_p |\psi_{\text{exc.}}\rangle = 0 \rightarrow \text{Non-trivial flux in plaquette } p$ F. J. Burnell and S. H. Simon, Ann. Phys. **325**, 2550 (2010); S. H. Simon and P. Fendley, J. Phys. A **46**, 105002 (2013)
- Excited states are closed flux lines piercing plaquettes
- Doubled achiral topological deconfined phase

- Ground state: $B_p |\psi_0
 angle = +|\psi_0
 angle o$ No flux in plaquette p
- Excited states: $B_p |\psi_{\text{exc.}}\rangle = 0 \rightarrow \text{Non-trivial flux in plaquette } p$ F. J. Burnell and S. H. Simon, Ann. Phys. **325**, 2550 (2010); S. H. Simon and P. Fendley, J. Phys. A **46**, 105002 (2013)
- Excited states are closed flux lines piercing plaquettes
- Doubled achiral topological deconfined phase

The simplest Abelian case: the semion theory

- Two strings: $\{1, s\}$
- Fusion rules: $1 \times 1 = 1$, $1 \times s = s$, $s \times s = 1$

Hilbert space for any graph with $N_{\rm v}$ trivalent vertices

• Dim
$$\mathcal{H} = 2^{\frac{N_v}{2}+1}$$

The simplest non-Abelian case: the Fibonacci theory

- Two strings: $\{1, \tau\}$
- Fusion rules: $1 \times 1 = 1$, $1 \times \tau = \tau$, $\tau \times \tau = 1 + \tau$

Hilbert space for any graph with $N_{\rm v}$ trivalent vertices

• Dim $\mathcal{H} = (1+\varphi^2)^{\frac{N_v}{2}} + (1+\varphi^{-2})^{\frac{N_v}{2}}$ with $\varphi = \frac{1+\sqrt{5}}{2}$ (golden ratio)

 $d_{ au}=arphi$ is the quantum dimension of the string au

A simple local perturbation \sim string tension

- Projector onto the flux-free state in the links: $V = \sum_{\ell} \delta_{\ell,1} = \sum_{\ell} C_{\ell}$
- Diagonal in the link basis but nontrivial in the flux basis
- $[B_p, C_\ell] \neq 0 \rightarrow V$ creates fluxes in plaquettes
- V generates dynamics and interactions between fluxes

A simple local perturbation \sim string tension

- Projector onto the flux-free state in the links: $V = \sum_{\ell} \delta_{\ell,1} = \sum_{\ell} C_{\ell}$
- Diagonal in the link basis but nontrivial in the flux basis
- $[B_p, C_\ell] \neq 0 \rightarrow V$ creates fluxes in plaquettes
- V generates dynamics and interactions between fluxes

A simple local perturbation \sim string tension

- Projector onto the flux-free state in the links: $V = \sum_{\ell} \delta_{\ell,1} = \sum_{\ell} C_{\ell}$
- Diagonal in the link basis but nontrivial in the flux basis
- $[B_p, C_\ell] \neq 0 \rightarrow V$ creates fluxes in plaquettes
- V generates dynamics and interactions between fluxes

The model

$$H = -\cos\theta \sum_{p} B_{p} - \sin\theta \sum_{\ell} C_{\ell}$$

- B_p = Projector onto the flux-free state in the plaquette p
- C_{ℓ} = Projector onto the flux-free state in the link ℓ

The model

$$H = -\cos\theta \sum_{p} B_{p} - \sin\theta \sum_{\ell} C_{\ell}$$

- B_p = Projector onto the flux-free state in the plaquette p
- C_{ℓ} = Projector onto the flux-free state in the link ℓ

The ladder

- Exact mapping onto transverse-field D²-state Potts model (1+1)
- $D \leqslant$ 2: 2nd-order transitions described by CFT
 - C. Gils, S. Trebst, A. Kitaev, A. W. W. Ludwig, M. Troyer, and Z. Wang, Nat. Phys. 5, 834 (2009)
 - C. Gils, J. Stat. Mech. P07019 (2009)
 - E. Ardonne, J. Gukelberger, A. W.W. Ludwig, S. Trebst, M. Troyer, New J. Phys. 13, 045006 (2011)

• D > 2: 1st-order transitions

M. D. Schulz, S. Dusuel, and J. Vidal, Phys. Rev. B 91, 155110 (2015)

The model

$$H = -\cos\theta \sum_{p} B_{p} - \sin\theta \sum_{\ell} C_{\ell}$$

- B_p = Projector onto the flux-free state in the plaquette p
- C_{ℓ} = Projector onto the flux-free state in the link ℓ

The honeycomb lattice

- Abelian theories ~ transverse-field D²-state Potts model (2+1)
 F. J. Burnell, S. H. Simon, J. K. Slingerland, Phys. Rev. B 84, 125434 (2011)
- Non-Abelian theories ?
- Tools: High-order perturbation theory, mean field, exact diagonalizations
 - M. D. Schulz, S. Dusuel, K. P. Schmidt, and J. Vidal, Phys. Rev. Lett. 110, 147203 (2013)
 - M. D. Schulz, S. Dusuel, G. Misguich, K. P. Schmidt, and J. Vidal, Phys. Rev. B 89, 201103(R) (2014)
 - S. Dusuel, and J. Vidal, Phys. Rev. B 91, 155110 (2015)

The model

$$H = -\cos\theta \sum_{p} B_{p} - \sin\theta \sum_{\ell} C_{\ell}$$

- B_p = Projector onto the flux-free state in the plaquette p
- C_{ℓ} = Projector onto the flux-free state in the link ℓ

Non-Abelian theories with N strings on a genus g surface

- $\theta = 0$: No flux in the plaquette (degeneracy genus- and theory-dependent)
- $\theta = \pi/2$: No flux in the links (degeneracy = 1)
- $\theta = \pi$: One flux in each plaquette (degeneracy = ∞)
- $\theta = 3\pi/2$: One flux in each link (degeneracy = ∞ for N > 2)

Ground-state energy per plaquette vs θ

ED with $N_p = 13$ on a torus + Series near $\theta = 0$ (order 1 to 11) + Series near $\theta = \pi/2$ (order 1 to 20)

Ground-state energy per plaquette vs θ

ED with $N_p = 13$ on a torus + Series near $\theta = 0$ (order 1 to 11) + Series near $\theta = \pi/2$ (order 1 to 20)+ Mean field

Excitation spectrum vs θ

ED with $N_p = 13$ on a torus

Excitation spectrum $vs \theta$

ED with $N_p = 13$ on a torus + Series near $\theta = 0$ (order 1 to 10) + Series near $\theta = \pi/2$ (order 1 to 11)

Nature of transitions still unknown !

2 String nets with tension

Bound states

Bound states and quantum phase transitions

- No bound state ⇒ 2nd-order transition ? Yes !
 Ex: 2 ≤ q ≤ 3-state Potts model in (1+1) dimensions
- Bound states ⇒ 1st-order transition ? No !
 Ex: 3 < q ≤ 4-state Potts model in (1+1) dimensions

* P. Dorey, A. Pocklington, and R. Tateo, Nucl. Phys. B 661, 425 (2003)

 1st-order transition ⇒ Bound states ? Yes ! (in general...) Ex: 4 < q-state Potts model in (1+1) dimensions

Bound states

Bound states and quantum phase transitions

- No bound state ⇒ 2nd-order transition ? Yes !
 Ex: 2 ≤ q ≤ 3-state Potts model in (1+1) dimensions
- Bound states ⇒ 1st-order transition ? No !
 Ex: 3 < q ≤ 4-state Potts model in (1+1) dimensions

*P. Dorey, A. Pocklington, and R. Tateo, Nucl. Phys. B 661, 425 (2003)

 1st-order transition ⇒ Bound states ? Yes ! (in general...) Ex: 4 < q-state Potts model in (1+1) dimensions

Role of the string tension

- Dynamics + interaction between fluxes
- Anyonic bound states ?

M. D. Schulz, S. Dusuel, and J. Vidal, Phys. Rev. B 94, 205102 (2016)

Two-flux excited state

Two-flux excited state + Perturbation

Two-flux excited states + Perturbation

Fibonacci fusion rules: $\tau \times \tau = 1 + \tau$

Two-flux excited state + Perturbation

Fibonacci fusion rules: $\tau \times \tau = 1 + \tau$

Bound states

Results valid for any (modular) theory

Perturbative approach in the limit $\theta \ll 1$:

- Ladder : 1 Bound state for $3 < D^2$
- \bullet Honeycomb: 1 Bound state for 2 $< D^2 < D_{\rm c}^2$ 3 Bound states for $D_{\rm c}^2 < D^2$
- "Critical" total quantum dimension $D_{
 m c}\simeq 3.87145+{\cal O}(heta^2)$

M. D. Schulz, S. Dusuel, and J. Vidal, Phys. Rev. B 94, 205102 (2016)

Outlook

Take-home messages and perspectives

- String-nets can describe many topological phases
- Confinement-deconfinement transitions are induced by string tensions
- Tensor networks approach (perturbative PEPS)
- Transitions between compatible topological phases (same fusion rules)
- New universality classes in two dimensions to be unveiled

