Topology and entanglement detected by fermionic partial transpose

Shinsei Ryu
with Hassan Shapourian, Ken Shiozaki

University of Chicago

July 18, 2018

Collaborators and References

- Collaborators: Hassan Shapourian (U Chicago) and Ken Shiozaki (RIKEN)

- Papers:
- "Partial time-reversal transformation and entanglement negativity in fermionic systems", arXiv:1611.07536
- "Detection of symmetry-protected topological phases in fermionic many-body systems", arXiv:1607.03896
- "Many-body topological invariants for fermionic short-range entangled topological phases protected by antiunitary symmetries", arXiv:1710.01886
- "Entanglement negativity of fermions: monotonicity, separability criterion and classification of few-mode states ", arXiv:1804.08637

Summary

- Construction of partial transpose operation for fermionic systems; ("femrionic partial transpose")
- Fermionic partial transpose can be used (i) to detect fermionic quantum entanglement by entanglement negativity.
- and (ii) to detect topological invariants of fermionic topological phases protected by time-reversal (and others).

Outline

1. Partial transpose (in bosonic systems)

- Useful operation to diagnose entanglement,
- and topological phases

2. Fermionic partial transpose

- Issues
- Our construction
- Motivation behind our construction
- LOCC monotone

3. Applications

- 2d Topological insulators
- Fermi surface, strong randomness

Partial transpose: bosonic case

- Definition: for the density matrix $\rho_{A_{1} \cup A_{2}}$,

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho_{A_{1} \cup A_{2}}^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho_{A_{1} \cup A_{2}}\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle
$$

where $\left|e_{i}^{(1,2)}\right\rangle$ is the basis of $\mathcal{H}_{A_{1}, A_{2}}$.

- Detecting quantum correlation coming from "off-diagonal" parts: Entanglement negativity and logarithmic negativity:

$$
\frac{1}{2}\left(\operatorname{Tr}\left|\rho_{A}^{T_{2}}\right|-1\right), \quad \mathcal{E}_{A}=\log \operatorname{Tr}\left|\rho_{A}^{T_{2}}\right|
$$

[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

- Partial transpose \simeq partial time-reversal

$$
H^{*}=H^{T}
$$

Useful for detecting topological phases with time-reversal symmetry.

Partial transpose and quantum entanglement

- Bell pair: $|\Psi\rangle=\frac{1}{\sqrt{2}}[|01\rangle-|10\rangle]$

$$
\rho=|\Psi\rangle\langle\Psi|=\frac{1}{2}[|01\rangle\langle 01|+|10\rangle\langle 10|-|01\rangle\langle 10|-|10\rangle\langle 01|]
$$

How do we quantify quantum entanglement?

- Partial transpose:

$$
\rho^{T_{2}}=\frac{1}{2}[|01\rangle\langle 01|+|10\rangle\langle 10|-\underline{|00\rangle\langle 11|}-\underline{|11\rangle\langle 00|}]
$$

- Entangled states are badly affected by partial transpose: Negative eigenvalues: $\operatorname{Spec}\left(\rho^{T_{2}}\right)=\{1 / 2,1 / 2,1 / 2,-1 / 2\}$.
- C.f. For a classical state:

$$
\rho=\frac{1}{2}[|00\rangle\langle 00|+|11\rangle\langle 11|]=\rho^{T_{2}}
$$

Partial transpose and Entanglement negativity

- How to quantify quantum entanglement between A_{1} and A_{2} when $\rho_{A_{1} \cup A_{2}}$ is mixed ? E.g., finite temperature, $A_{1,2}$ is a part of bigger system.
- The entanglement entropy is an entanglement measure only for pure states.
- Entanglement negativity and logarithmic negativity, using partial transpose, can extract quantum correlations only. [Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]
- The logarithmic negativity is not convex but an entanglement monotone. [Plenio (2005)]

Partial transpose and topological phases: e.g., Haldane phase

- Spin $1 / 2$ edge state:

- Quantum anomaly: edge states are not invariant under $S O(3)$ rotation, but pick up a phase (-1)
- Haldane state $=$ collection of Bell pairs

Partial transpose and topological invariant

- Partial transpose can be used to construct/define topological invariants of bosonic topological phases [Pollmann-Turner]

- Step 1: The reduced density matrix for an interval $I, \rho_{I}:=\operatorname{Tr}_{\bar{I}}|\Psi\rangle\langle\Psi|$.
- Step 2: Bipartition I into two adjacent intervals, $I=I_{1} \cup I_{2}$.
- Step 3: Take partial time-reversal acting only on $I_{1} ; \rho_{I} \longrightarrow \rho_{I}^{T_{1}}$.
- Step 4: The invariant is given by the phase of:

$$
Z=\operatorname{Tr}\left[\rho_{I} \rho_{I}^{T_{1}}\right]
$$

and \pm 1. C.f. Negativity: $\operatorname{Tr}\left|\rho_{I}^{T_{1}}\right|$

- Matrix product state representation:
- Wave function;

$$
\begin{aligned}
\Psi\left(s_{1}, s_{2}, \cdots\right)= & \sum_{\left\{i_{n}=1, \cdots\right\}} A_{i_{1} i_{2}}^{s_{1}} A_{i_{2} i_{3}}^{s_{2}} A_{i_{3} i_{4}}^{s_{3}} \cdots s_{a}=\uparrow, \downarrow \\
& \underbrace{i_{1}}_{s_{1}} A_{s_{2}}^{i_{2}} A_{s_{3}}^{i_{3}} A A_{s_{4}}^{i_{4}}-i_{5}^{i_{5}}
\end{aligned}
$$

- Topological invariant:

$$
Z=\operatorname{Tr}\left[\rho_{I} \rho_{I}^{T_{1}}\right]
$$

- The invariant "simulates" the path integral on real projective plane $\mathbb{R} P^{2}$: [Shiozaki-Ryu (16)]

Summary so far

- Partial transpose is useful to detect entanglement and topological properties of many-body states.
- Partial transpose can generate spacetimes which are unorientable.
- How about fermion systems? E.g., the Kitaev chain

The Kitaev chain

- The Kitaev chain

$$
\begin{aligned}
H= & \sum_{j}\left[-t c_{j}^{\dagger} c_{j+1}+\Delta c_{j+1}^{\dagger} c_{j}^{\dagger}+h . c .\right]-\mu \sum_{j} c_{j}^{\dagger} c_{j} \\
& c_{j}, c_{j}^{\dagger}>Q_{j-1} \quad 1 \quad \Delta
\end{aligned}
$$

- Phase diagram: there are only two phases:

- Topologically non-trivial phase is realized when $2|t| \geq|\mu|$.

Majorana dimers

- Fractionalizing an electron into two Majoranas:

$$
c_{x}=c_{x}^{L}+i c_{x}^{R}, \quad c_{x}^{\dagger}=c_{x}^{L}-i c_{x}^{R}
$$

Issues in fermionic systems (1)

- Consider \log negativity \mathcal{E} for two adjacent intervals of equal length. ($L=4 \ell=8$)

- Vertical axis: μ / t ranging from 0 to 6 .
- (Blue circles and Red corsses) is computed by Jordan-Wigner + bosonic partial transpose
- Log negativity fails to capture Majorana dimers.

Issues in fermionic systems (2)

- Partial transpose of bosonic Gaussian states is still Gaussian; easy to compute by using the correlation matrix
- Partial transpose of fermionic Gaussian states are not Gaussian
- $\rho^{T_{1}}$ can be written in terms of two Gaussian operators $O_{ \pm}$:

$$
\rho^{T_{1}}=\frac{1-i}{2} O_{+}+\frac{1+i}{2} O_{-}
$$

- Negativity estimators/bounds using $\operatorname{Tr}\left[\sqrt{O_{+} O_{-}}\right][$Herzog-Y. Wang (16), Eisert-Eisler-Zimborás (16)]
- Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]

Topological/geometrical insight into partial transpose

- Lesson from the Haldane phase example: partial transpose can change the topology of spacetime: quantum field theory on an unoriented spacetime [Pollmann-Turner, Calabrese-Cardy-Tonni, Shiozaki-SR]
- The relevant TQFT are invertible, fermionic and defined on unoriented spacetime ("Pin" TQFT) [Kapustin, Hsieh-Cho-Sule-SR-Leigh, Kapustin-Thorngren-Turzillo-Wang, Hsieh-Cho-SR, Witten, Freed-Hopkins, Metlitski, Barkeshli-Bonderson-Jian-Cheng-Walker, Yonekura-Tachikawa, and many others]
- For Majorana fermions, we should also be able to give a topological interpretation for partial transpose.
- We use topological quantum field theory as a guide to search for a proper definition of partial transpose for fermions.

Partial transpose for fermions - our definition

- Fermion operator algebra does not trivially factorize for $\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$.
- Expand the density matrix in terms of Majorana fermions:

$$
\rho_{A}=\text { const. }+\sum_{p_{1,2}} \rho_{p_{1} p_{2}} c_{p_{1}} c_{p_{2}}+\sum_{p_{1, \ldots, 4}} \rho_{p_{1} p_{2} p_{3} p_{4}} c_{p_{1}} c_{p_{2}} c_{p_{3}} c_{p_{4}}+\cdots
$$

- Group them in terms of subregions:

$$
\rho_{A}=\sum_{m, n}^{m+n=e v e n} \sum_{\left\{p_{i}, q_{j}\right\}} \rho_{p_{i}, q_{j}} \underbrace{c_{p_{1}}^{A_{1}} \cdots c_{p_{m}}^{A_{1}}}_{\in A_{1}} \underbrace{c_{q_{1}}^{A_{2}} \cdots c_{q_{n}}^{A_{2}}}_{\in A_{2}}
$$

- Define partial transpose by $\rho_{p, q} \rightarrow \rho_{p, q} i^{m}$:

$$
\rho_{A}^{T_{1}}=\sum_{m, n}^{m+n=e v e n} \sum_{\left\{p_{i}, q_{j}\right\}} \rho_{p_{i}, q_{j}} i^{m} c_{p_{1}}^{A_{1}} \cdots c_{p_{m}}^{A_{1}} c_{q_{1}}^{A_{2}} \cdots c_{q_{n}}^{A_{2}}
$$

- C.f. fermionic matrix product states perspective [Bultinck et al]
- Gaussian states stay Gaussian under our partial transpose

Comparison with previous definitions

[Shiozaki-Shapourian-SR (16)]
(a)

- (Blue circles and Red crosses): Old (bosonic) definition
- (Green triangles and Orange triangles) Our definition;
- At critical point: agrees with CFT prediction by Calabrese-Cardy-Tonni.

Critical point

- The logarithmic negativity for two adjacent intervals of equal length ℓ at the critical point (the SSH model).

- The numerical result using the free fermion formula (points) with $L=40-400$ agrees with the CFT result (solid line). [Calabrese-Cardy-Tonni]

$$
\mathcal{E}=\frac{c}{4} \ln \tan \frac{\pi \ell}{L}
$$

- Analytical derivation by using the replica method + Fisher-Hartwig.

Topological invariant for TRS Majorana chain

- Step 1: The reduced density matrix for an interval $I, \rho_{I}:=\operatorname{Tr}_{\bar{I}}|\Psi\rangle\langle\Psi|$.
- Step 2: Bipartition I into two adjacent intervals, $I=I_{1} \cup I_{2}$.
- Step 3: Take partial time-reversal acting only on $I_{1} ; \rho_{I} \longrightarrow \rho_{I}^{T_{1}}$.
- Step 4: The invariant is given by the phase of: $Z=\operatorname{Tr}\left[\rho_{I} \rho_{I}^{T_{1}}\right]$
- This quantity should correspond, in the continuum limit, the partition function of the Kitaev chain on the real projective plane.

Numerics

- Numerics

- The phase of Z is quantized to the 8 th root of unity. Consistent with \mathbb{Z}_{8} classification: [Fidkowski-Kitaev(10)]

Monotoncity under LOCC

- For bosonic systems, the entanglement negativity is entanglement monotone under LOCC (local quantum operations and classical communications).

$$
\begin{aligned}
& \rho \longrightarrow(A \otimes B) \rho(A \otimes B)^{\dagger} \\
& \text { or } \quad \rho \longrightarrow\left(A^{i} \otimes 1\right)\left(1 \otimes B_{i}\right) \rho\left(1 \otimes B_{i}\right)^{\dagger}\left(A^{i} \otimes 1\right)^{\dagger} \\
& \text { but not } \quad \rho \longrightarrow K_{A B} \rho K_{A B}^{\dagger} .
\end{aligned}
$$

- I.e., what cannot be generated by LOCC = "quantum entanglement".

Monotoncity under LOCC

- von-Neumann Entanglement entropy decreases monotonically at $T=0$, but not at $T>0$.
- (Ordinary) negativity decreases monotonically under LOCC.
- We have introduced fermionic version of partial transpose, and negativity, but is it a good entanglement measure? Is it monotone under LOCC?
- Proved fermionic entanglement negativity is monotone, if LOCC are taken to be fermion number parity preserving. [Shapourian-SR (18)]

Outline

1. Partial transpose (in bosonic systems)

- Useful operation to diagnose entanglement,
- and topological phases

2. Fermionic partial transpose

- Issues
- Our construction
- Motivation behind our construction
- LOCC monotone

3. Applications

- 2d Topological insulators
- Fermi surface, strong randomness

Application: 2d time-reversal symmetric topological insulators

[Shiozaki-Shapourian-SR (17)]

- Fermionic topological phase protected by time-reversal and charge $U(1)$.
- Conventionally discussed in terms of free fermion band theory

- Fully many-body formulation is now possible with fermionic partial transport.

Many-body \mathbb{Z}_{2} topological invariant

- Setup:

- Formula: ($\mathrm{T}_{1}=$ fermionic partial transpose)

$$
\begin{aligned}
& Z=\operatorname{Tr}_{R_{1} \cup R_{3}}\left[\rho_{R_{1} \cup R_{3}}^{+} C_{T}^{I_{1}}\left[\rho_{R_{1} \cup R_{3}}^{-}\right]^{\top}\left[C_{T}^{I_{1}}\right]^{\dagger}\right], \\
& \rho_{R_{1} \cup R_{3}}^{ \pm}=\operatorname{Tr}_{\overline{R_{1} \cup R_{3}}}[\underbrace{e^{ \pm \sum_{\mathbf{r} \in R_{2}} \frac{2 \pi i y}{L_{y}} n(\mathbf{r})}}_{\text {partial } U(1) \text { twist }}|G S\rangle\langle G S|]
\end{aligned}
$$

$C_{T} \sim$ spin flip unitary

- Z is the partition function on Klein bottle $\times S^{1}$ with flux.

Many-body \mathbb{Z}_{2} topological invariant

- Numerics on a lattice:

Application: Fermi surface at finite T

- Renyi entanglement entropy:

$$
\begin{aligned}
& S_{n}=\frac{n+1}{6 n} C_{2} \cdot \ell \ln \left|\frac{\beta}{\pi a_{0}} \sinh \frac{\pi \ell}{\beta}\right| \\
& \text { where } \quad C_{2}=\frac{1}{8 \pi} \int_{\partial \Omega} \int_{\partial \Gamma} d S_{k} d S_{x}\left|n_{x} \cdot n_{k}\right|
\end{aligned}
$$

- Negativity:

$$
\mathcal{E}=C_{2} \cdot \frac{\ell}{2}\left[\ln \left(\frac{\beta}{\pi a_{0}} \sinh \frac{\pi \ell}{\beta}\right)-\frac{\pi \ell}{\beta}\right]
$$

- No sudden death

Application: Randomness

- The result is consistent with the strong randomness RG.

Summary

- Based on the topological field theory intuition, we introduced partial transpose (time-reversal) for fermionic systems.
- The (log) negativity using the fermionic partial transpose can capture the formation of Majorana dimers in the Kitaev chain.
- Similar constructions of many-body topological invariants for other fermionic SPT phases; e.g. \mathbb{Z}_{16} invariant for (3+1)d topological superconductors, \mathbb{Z}_{2} time-reversal symmetric topological insulators.
- Partial transpose of fermionic Gaussian states are Gaussian, and hence easy to compute.

the Kitaev chain in zero correlation limit

- The reduced density matrix

$$
\begin{gathered}
\rho_{A}=\frac{1}{4}\left[\left(1+f_{1}^{\dagger} f_{2}^{\dagger}\right)|0\rangle\langle 0|\left(1+f_{2} f_{1}\right)+\left(f_{1}^{\dagger}+f_{2}^{\dagger}\right)|0\rangle\langle 0|\left(f_{1}+f_{2}\right)\right] \\
\rho_{A}=\frac{1}{4}\left[\begin{array}{cccc}
1 & & & 1 \\
& 1 & 1 & \\
& 1 & 1 & \\
1 & & & 1
\end{array}\right] \Longrightarrow \rho_{A}^{R_{1}}=\frac{1}{4}\left[\begin{array}{cccc}
1 & & & i \\
& 1 & i & \\
& i & 1 & \\
i & & & 1
\end{array}\right]
\end{gathered}
$$

- Negativity: $\operatorname{Tr}\left|\rho_{A}^{R_{1}}\right|=\sqrt{2}$
- The SPT invariant

$$
\operatorname{Tr}\left(\rho_{A} \rho_{A}^{R_{1}}\right)=\frac{1+i}{4}=\frac{1}{2 \sqrt{2}} e^{i \pi / 4}
$$

- This phase is the many-body topological invariant of the time-reversal symmetric Kitaev chain.
- It agrees with the partition function of Pin TQFT on $\mathbb{R} P^{2}\left(\right.$ Pin $^{-}$ structure), and can detect the \mathbb{Z}_{8} classification.

