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Summary

I Construction of partial transpose operation for fermionic systems;
(�femrionic partial transpose�)

I Fermionic partial transpose can be used (i) to detect fermionic quantum
entanglement by entanglement negativity.

I and (ii) to detect topological invariants of fermionic topological phases
protected by time-reversal (and others).



Outline

1. Partial transpose (in bosonic systems)
I Useful operation to diagnose entanglement,
I and topological phases

2. Fermionic partial transpose
I Issues
I Our construction
I Motivation behind our construction
I LOCC monotone

3. Applications
I 2d Topological insulators
I Fermi surface, strong randomness



Partial transpose: bosonic case

I De�nition: for the density matrix ρA1∪A2 ,
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where |e(1,2)
i 〉 is the basis of HA1,A2 .

I Detecting quantum correlation coming from �o�-diagonal� parts:
Entanglement negativity and logarithmic negativity:

1

2
(Tr |ρT2

A | − 1), EA = log Tr |ρT2
A |

[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio

(05) ...]

I Partial transpose ' partial time-reversal

H∗ = HT

Useful for detecting topological phases with time-reversal symmetry.



Partial transpose and quantum entanglement

I Bell pair:|Ψ〉 = 1√
2

[|01〉 − |10〉]

ρ = |Ψ〉〈Ψ| =
1

2
[|01〉〈01|+ |10〉〈10| − |01〉〈10| − |10〉〈01|]

How do we quantify quantum entanglement?

I Partial transpose:

ρT2 =
1

2
[|01〉〈01|+ |10〉〈10| − |00〉〈11| − |11〉〈00|]

I Entangled states are badly a�ected by partial transpose: Negative
eigenvalues: Spec(ρT2) = {1/2, 1/2, 1/2,−1/2}.

I C.f. For a classical state:

ρ =
1

2
[|00〉〈00|+ |11〉〈11|] = ρT2



Partial transpose and Entanglement negativity

I How to quantify quantum entanglement between A1 and A2 when ρA1∪A2

is mixed ? E.g., �nite temperature, A1,2 is a part of bigger system.

I The entanglement entropy is an entanglement measure only for pure
states.

I Entanglement negativity and logarithmic negativity, using partial

transpose, can extract quantum correlations only. [Peres (96),

Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

I The logarithmic negativity is not convex but an entanglement monotone.
[Plenio (2005)]



Partial transpose and topological phases: e.g., Haldane phase

I Spin 1/2 edge state:

I Quantum anomaly: edge states are not invariant under SO(3) rotation,
but pick up a phase (−1)

I Haldane state = collection of Bell pairs



Partial transpose and topological invariant

I Partial transpose can be used to construct/de�ne topological invariants of
bosonic topological phases [Pollmann-Turner]

I Step 1: The reduced density matrix for an interval I, ρI := TrĪ |Ψ〉〈Ψ|.

I Step 2: Bipartition I into two adjacent intervals, I = I1 ∪ I2.

I Step 3: Take partial time-reversal acting only on I1; ρI −→ ρT1
I .

I Step 4: The invariant is given by the phase of:

Z = Tr[ρIρ
T1
I ],

and ±1. C.f. Negativity: Tr |ρT1
I |



I Matrix product state representation:
I Wave function;

Ψ(s1, s2, · · · ) =
∑

{in=1,··· }
As1i1i2A

s2
i2i3

As3i3i4 · · · sa =↑, ↓

I Topological invariant:

Z = Tr[ρIρ
T1
I ]



I The invariant "simulates" the path integral on real projective plane RP 2 :
[Shiozaki-Ryu (16)]

= = = =



Summary so far

I Partial transpose is useful to detect entanglement and topological
properties of many-body states.

I Partial transpose can generate spacetimes which are unorientable.

I How about fermion systems? E.g., the Kitaev chain



The Kitaev chain

I The Kitaev chain

H =
∑
j

[
− tc†jcj+1 + ∆c†j+1c

†
j + h.c.

]
− µ

∑
j

c†jcj

I Phase diagram: there are only two phases:

I Topologically non-trivial phase is realized when 2|t| ≥ |µ|.



Majorana dimers

I Fractionalizing an electron into two Majoranas:

cx = cLx + icRx , c†x = cLx − icRx .



Issues in fermionic systems (1)

I Consider log negativity E for two adjacent intervals of equal length.
(L = 4` = 8)

I Vertical axis: µ/t ranging from 0 to 6.

I (Blue circles and Red corsses) is computed by Jordan-Wigner + bosonic
partial transpose

I Log negativity fails to capture Majorana dimers.



Issues in fermionic systems (2)

I Partial transpose of bosonic Gaussian states is still Gaussian; easy to
compute by using the correlation matrix

I Partial transpose of fermionic Gaussian states are not Gaussian
I ρT1 can be written in terms of two Gaussian operators O±:

ρT1 =
1− i

2
O+ +

1 + i

2
O−

I Negativity estimators/bounds using Tr [
√
O+O−] [Herzog-Y. Wang (16),

Eisert-Eisler-Zimborás (16)]
I Spin structures: [Coser-Tonni-Calabrese, Herzog-Wang]



Topological/geometrical insight into partial transpose

I Lesson from the Haldane phase example: partial transpose can change the
topology of spacetime: quantum �eld theory on an unoriented spacetime
[Pollmann-Turner, Calabrese-Cardy-Tonni, Shiozaki-SR]

I The relevant TQFT are invertible, fermionic and de�ned on unoriented
spacetime (�Pin� TQFT) [Kapustin, Hsieh-Cho-Sule-SR-Leigh,

Kapustin-Thorngren-Turzillo-Wang, Hsieh-Cho-SR, Witten, Freed-Hopkins,

Metlitski, Barkeshli-Bonderson-Jian-Cheng-Walker, Yonekura-Tachikawa, and

many others]

I For Majorana fermions, we should also be able to give a topological
interpretation for partial transpose.

I We use topological quantum �eld theory as a guide to search for a proper
de�nition of partial transpose for fermions.



Partial transpose for fermions � our de�nition

[Shiozaki-Shapourian-SR (16)]

I Fermion operator algebra does not trivially factorize for HA1 ⊗HA2 .

I Expand the density matrix in terms of Majorana fermions:

ρA = const.+
∑
p1,2

ρp1p2cp1cp2 +
∑

p1,...,4

ρp1p2p3p4cp1cp2cp3cp4 + · · ·

I Group them in terms of subregions:

ρA =

m+n=even∑
m,n

∑
{pi,qj}

ρpi,qj c
A1
p1
· · · cA1

pm︸ ︷︷ ︸
∈A1

cA2
q1
· · · cA2

qn︸ ︷︷ ︸
∈A2

I De�ne partial transpose by ρp,q → ρp,qi
m:

ρT1
A =

m+n=even∑
m,n

∑
{pi,qj}

ρpi,qj i
mcA1

p1
· · · cA1

pm
cA2
q1
· · · cA2

qn

I C.f. fermionic matrix product states perspective [Bultinck et al]

I Gaussian states stay Gaussian under our partial transpose



Comparison with previous de�nitions

[Shiozaki-Shapourian-SR (16)]

I (Blue circles and Red crosses): Old (bosonic) de�nition

I (Green triangles and Orange triangles) Our de�nition;

I At critical point: agrees with CFT prediction by Calabrese-Cardy-Tonni.



Critical point

I The logarithmic negativity for two adjacent intervals of equal length ` at
the critical point (the SSH model).

I The numerical result using the free fermion formula (points) with
L = 40-400 agrees with the CFT result (solid line). [Calabrese-Cardy-Tonni]

E =
c

4
ln tan

π`

L

I Analytical derivation by using the replica method + Fisher-Hartwig.



Topological invariant for TRS Majorana chain

I Step 1: The reduced density matrix for an interval I, ρI := TrĪ |Ψ〉〈Ψ|.

I Step 2: Bipartition I into two adjacent intervals, I = I1 ∪ I2.

I Step 3: Take partial time-reversal acting only on I1; ρI −→ ρT1
I .

I Step 4: The invariant is given by the phase of: Z = Tr[ρIρ
T1
I ]

I This quantity should correspond, in the continuum limit, the partition
function of the Kitaev chain on the real projective plane.



Numerics

I Numerics

I The phase of Z is quantized to the 8th root of unity.
Consistent with Z8 classi�cation: [Fidkowski-Kitaev(10)]



Monotoncity under LOCC

I For bosonic systems, the entanglement negativity is entanglement
monotone under LOCC (local quantum operations and classical
communications).

ρ −→ (A⊗B)ρ(A⊗B)†

or ρ −→ (Ai ⊗ 1)(1⊗Bi)ρ(1⊗Bi)†(Ai ⊗ 1)†

but not ρ −→ KAB ρK
†
AB .

I I.e., what cannot be generated by LOCC = �quantum entanglement�.



Monotoncity under LOCC

I von-Neumann Entanglement entropy decreases monotonically at T = 0,
but not at T > 0.

I (Ordinary) negativity decreases monotonically under LOCC.

I We have introduced fermionic version of partial transpose, and negativity,
but is it a good entanglement measure? Is it monotone under LOCC?

I Proved fermionic entanglement negativity is monotone, if LOCC are taken
to be fermion number parity preserving. [Shapourian-SR (18)]
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Application: 2d time-reversal symmetric topological insulators

[Shiozaki-Shapourian-SR (17)]

I Fermionic topological phase protected by time-reversal and charge U(1).

I Conventionally discussed in terms of free fermion band theory

I Fully many-body formulation is now possible with fermionic partial
transport.



Many-body Z2 topological invariant

[Shiozaki-Shapourian-SR (17)]

I Setup:

I Formula: (T1 = fermionic partial transpose)

Z = TrR1∪R3

[
ρ+
R1∪R3

CI1T [ρ−R1∪R3
]T1 [CI1T ]†

]
,

ρ±R1∪R3
= TrR1∪R3

[
e
±

∑
r∈R2

2πiy
Ly

n(r)︸ ︷︷ ︸
partial U(1) twist

|GS〉〈GS|
]

CT ∼ spin �ip unitary

I Z is the partition function on Klein bottle× S1 with �ux.



Many-body Z2 topological invariant

I Numerics on a lattice:



Application: Fermi surface at �nite T

I Renyi entanglement entropy:

Sn =
n+ 1

6n
C2 · ` ln

∣∣∣∣ βπa0
sinh

π`

β

∣∣∣∣
where C2 =

1

8π

∫
∂Ω

∫
∂Γ

dSkdSx|nx · nk|

I Negativity:

E = C2 ·
`

2

[
ln

(
β

πa0
sinh

π`

β

)
− π`

β

]

I No sudden death



Application: Randomness

I

I The result is consistent with the strong randomness RG.



Summary

I Based on the topological �eld theory intuition, we introduced partial
transpose (time-reversal) for fermionic systems.

I The (log) negativity using the fermionic partial transpose can capture the
formation of Majorana dimers in the Kitaev chain.

I Similar constructions of many-body topological invariants for other
fermionic SPT phases; e.g. Z16 invariant for (3+1)d topological
superconductors, Z2 time-reversal symmetric topological insulators.

I Partial transpose of fermionic Gaussian states are Gaussian, and hence
easy to compute.



the Kitaev chain in zero correlation limit

I The reduced density matrix

ρA =
1

4

[
(1 + f†1f

†
2 )|0〉〈0|(1 + f2f1) + (f†1 + f†2 )|0〉〈0|(f1 + f2)

]
I

ρA =
1

4

 1 1
1 1
1 1

1 1

 =⇒ ρR1
A =

1

4

 1 i
1 i
i 1

i 1


I Negativity: Tr |ρR1

A | =
√

2

I The SPT invariant

Tr(ρAρ
R1
A ) =

1 + i

4
=

1

2
√

2
eiπ/4

I This phase is the many-body topological invariant of the time-reversal
symmetric Kitaev chain.

I It agrees with the partition function of Pin TQFT on RP 2 (Pin−

structure), and can detect the Z8 classi�cation.


