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Summary

» Construction of partial transpose operation for fermionic systems;
(“femrionic partial transpose”)

» Fermionic partial transpose can be used (i) to detect fermionic quantum
entanglement by entanglement negativity.

> and (ii) to detect topological invariants of fermionic topological phases
protected by time-reversal (and others).



Outline

1. Partial transpose (in bosonic systems)

> Useful operation to diagnose entanglement,
> and topological phases

2. Fermionic partial transpose
> [ssues
» Our construction
> Motivation behind our construction
» LOCC monotone

3. Applications

> 2d Topological insulators
> Fermi surface, strong randomness



Partial transpose: bosonic case

» Definition: for the density matrix pa,ua,,
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where |e; ') is the basis of Ha, 4,.

» Detecting quantum correlation coming from “off-diagonal” parts:
Entanglement negativity and logarithmic negativity:

1
(Trlp |—1), &a=log Tr|py|

[Peres (96), Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio
(05) ...]

» Partial transpose ~ partial time-reversal
H* _ HT

Useful for detecting topological phases with time-reversal symmetry.



Partial transpose and quantum entanglement

v

Bell pair:|¥) = % [|01) — |10)]

1
p=T)(¥| = S[I01){01] +[10){10] — [01)(10] — [10)(01]]
How do we quantify quantum entanglement?

» Partial transpose:

p? = %[|01><01| + [10)(10[ — [00)(11] — [11)(00]]

\4

Entangled states are badly affected by partial transpose: Negative
eigenvalues: Spec(p™2) = {1/2,1/2,1/2,—1/2}.

» C.f. For a classical state:

p = 31100)(00] +[11)(11] = p™



Partial transpose and Entanglement negativity

» How to quantify quantum entanglement between A; and As when pa,ua,
is mixed ? E.g., finite temperature, Ay 2 is a part of bigger system.

» The entanglement entropy is an entanglement measure only for pure
states.

» Entanglement negativity and logarithmic negativity, using partial
transpose, can extract quantum correlations only. [Peres (96),
Horodecki-Horodecki-Horodecki (96), Vidal-Werner (02), Plenio (05) ...]

» The logarithmic negativity is not convex but an entanglement monotone.
[Plenio (2005)]



Partial transpose and topological phases: e.g., Haldane phase

> Spin 1/2 edge state:

O =Spin1 —— = Bell pair

—OTHEOOO-

» Quantum anomaly: edge states are not invariant under SO(3) rotation,
but pick up a phase (—1)

» Haldane state = collection of Bell pairs



Partial transpose and topological invariant

v

Partial transpose can be used to construct/define topological invariants of
bosonic topological phases [Pollmann-Turner]
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Step 1: The reduced density matrix for an interval I, p; := Trz|U)(¥|.

v

Step 2: Bipartition I into two adjacent intervals, I = I; U I5.

v

Step 3: Take partial time-reversal acting only on I; pr — pITI.

v

Step 4: The invariant is given by the phase of:
Z = Tr[plprfl]a

and +1. Cf. Negativity: Tr|p;"|



» Matrix product state representation:
> Wave function;
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> Topological invariant:




[Shiozaki-Ryu (16)]

» The invariant "simulates" the path integral on real projective plane RP? :
SQ

SZ

: RP?
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Summary so far

» Partial transpose is useful to detect entanglement and topological
properties of many-body states.

» Partial transpose can generate spacetimes which are unorientable.

» How about fermion systems? E.g., the Kitaev chain



The Kitaev chain

» The Kitaev chain

H:Z[—tccj+1+AcJ+lJ-‘,-hc]—uz ¢
J

i—=1 Jj j+1

» Phase diagram: there are only two phases:

Topological * Trivial |12
It]

il = 2|t

» Topologically non-trivial phase is realized when 2[t| > |u|.



Majorana dimers

» Fractionalizing an electron into two Majoranas:

L, R R
C, = Cy +1C,, clzcl—zcz.

L R L
C Cy a:—l—l



Issues in fermionic systems (1)

» Consider log negativity £ for two adjacent intervals of equal length.
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> Vertical axis: p/t ranging from 0 to 6.

> (Blue circles and Red corsses) is computed by Jordan-Wigner + bosonic
partial transpose

» Log negativity fails to capture Majorana dimers.



Issues in fermionic systems (2)

> Partial transpose of bosonic Gaussian states is still Gaussian; easy to
compute by using the correlation matrix

» Partial transpose of fermionic Gaussian states are not Gaussian
» pT1 can be written in terms of two Gaussian operators O:
1—1 147
T
pt=

16)
7 YT

> Negativity estimators/bounds using Tr[/O41O_] [Herzog-Y. Wang (16),
Eisert-Eisler-Zimboras (16)]
> Spin structures: [Coser-Tonni-Calabrese, Herzog-\Wang]

O_



Topological/geometrical insight into partial transpose

» Lesson from the Haldane phase example: partial transpose can change the
topology of spacetime: quantum field theory on an unoriented spacetime
[Pollmann-Turner, Calabrese-Cardy-Tonni, Shiozaki-SR]

» The relevant TQFT are invertible, fermionic and defined on unoriented
spacetime (“Pin” TQFT) [Kapustin, Hsieh-Cho-Sule-SR-Leigh,
Kapustin-Thorngren-Turzillo-Wang, Hsieh-Cho-SR, Witten, Freed-Hopkins,
Metlitski, Barkeshli-Bonderson-Jian-Cheng-Walker, Yonekura-Tachikawa, and
many others]

» For Majorana fermions, we should also be able to give a topological
interpretation for partial transpose.

» We use topological quantum field theory as a guide to search for a proper
definition of partial transpose for fermions.



Partial transpose for fermions — our definition

[Shiozaki-Shapourian-SR (16)]

» Fermion operator algebra does not trivially factorize for Ha, @ Ha,.

» Expand the density matrix in terms of Majorana fermions:
pa = const. + Z Pp1p2Cp1Cpy T Z Pp1p2p3paCp1CpaCpsCpy T
P1,2 P1,....4
> Group them in terms of subregions:
m-+n=even
_ A1 AL A2 A2
pA = Z Z Ppisaj Cpy " Cpm Car” T Cay
myn {p;,q;} v v
o €A, €Ay
» Define partial transpose by pp.q — pp,qi™:

m-+tn=even
1 _ -m _Aq A1 Ao Ao
PA = Z Z Ppisazt Cpr " CprCar” T Can

m,n {pi,q;}

» C.f. fermionic matrix product states perspective [Bultinck et al]

> Gaussian states stay Gaussian under our partial transpose



Comparison with previous definitions

[Shiozaki-Shapourian-SR (16)]
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> (Blue circles and Red crosses): Old (bosonic) definition
> (Green triangles and Orange triangles) Our definition;

> At critical point: agrees with CFT prediction by Calabrese-Cardy-Tonni.



Critical point

> The logarithmic negativity for two adjacent intervals of equal length ¢ at
the critical point (the SSH model).
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» The numerical result using the free fermion formula (points) with
L = 40-400 agrees with the CFT result (solid line). [Calabrese-Cardy-Tonni]
e

E= glntanf

» Analytical derivation by using the replica method + Fisher-Hartwig.



Topological invariant for TRS Majorana chain
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Step 1: The reduced density matrix for an interval I, p; := Tr7|W)(¥|.

v

Step 2: Bipartition I into two adjacent intervals, I = I; U I5.

v

Step 3: Take partial time-reversal acting only on I1; pr — pfl.

v

Step 4: The invariant is given by the phase of: Z = Tr[p,plTl]

» This quantity should correspond, in the continuum limit, the partition
function of the Kitaev chain on the real projective plane.



Numerics

» Numerics

/Z)(m/4)

Topological

-2 0
u/t

» The phase of Z is quantized to the 8th root of unity.
Consistent with Zs classification: [Fidkowski-Kitaev(10)]

DA



Monotoncity under LOCC

» For bosonic systems, the entanglement negativity is entanglement
monotone under LOCC (local quantum operations and classical
communications).

p— (A® B)p(A® B)!
or p— (A®1)(1® B)p(1® B) (A" @ 1)
but not p— KappKhp.

> |l.e., what cannot be generated by LOCC = “quantum entanglement”.



Monotoncity under LOCC

» von-Neumann Entanglement entropy decreases monotonically at T'= 0,
but not at T' > 0.

v

(Ordinary) negativity decreases monotonically under LOCC.

v

We have introduced fermionic version of partial transpose, and negativity,
but is it a good entanglement measure? Is it monotone under LOCC?

v

Proved fermionic entanglement negativity is monotone, if LOCC are taken
to be fermion number parity preserving. [Shapourian-SR (18)]



Outline

1. Partial transpose (in bosonic systems)

> Useful operation to diagnose entanglement,
> and topological phases

2. Fermionic partial transpose
> [ssues
» Our construction
> Motivation behind our construction
» LOCC monotone

3. Applications

> 2d Topological insulators
> Fermi surface, strong randomness



Application: 2d time-reversal symmetric topological insulators

[Shiozaki-Shapourian-SR (17)]

» Fermionic topological phase protected by time-reversal and charge U(1).

» Conventionally discussed in terms of free fermion band theory
e(k)

EF

en(k)
|un(K)) Bloch wave functic

» Fully many-body formulation is now possible with fermionic partial
transport.



Many-body Zs topological invariant

[Shiozaki-Shapourian-SR (17)]
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> Setup:

» Formula: (T1 = fermionic partial transpose)

Z = Temuns [Phor, CF lom,on, " ICRTT],
27T

+ + Trer, ()
pivum, = Trmom; | &< v " |GS) (S|
partial U(1) twist
Cr ~ spin flip unitary

> Z is the partition function on Klein bottle x S* with flux.



Many-body Zs topological invariant

» Numerics on a lattice:

1.0

Topological

DA



Application: Fermi surface at finite T

> Renyi entanglement entropy:
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» No sudden death



Application: Randomness

@ 20 A L=200
v L=400
15[ o L=1600
— E=llnl+k

- - E=Eme+k
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> The result is consistent with the strong randomness RG.



Summary

» Based on the topological field theory intuition, we introduced partial
transpose (time-reversal) for fermionic systems.

» The (log) negativity using the fermionic partial transpose can capture the
formation of Majorana dimers in the Kitaev chain.

» Similar constructions of many-body topological invariants for other
fermionic SPT phases; e.g. Zi6 invariant for (3+1)d topological
superconductors, Zs time-reversal symmetric topological insulators.

» Partial transpose of fermionic Gaussian states are Gaussian, and hence
easy to compute.



the Kitaev chain in zero correlation limit

/\'Y

» The reduced density matrix

pa= 1 [+ HEDIOOI + fat) + (1] + FHIONOI + 2]

1 1 1 7

_1 11 o m L 1
PA= Y 11 Pam =7 i1

» Negativity: Tr[p{'| = /2
» The SPT invariant
Lti_ 1 s

Te(pap}') = — =3

» This phase is the many-body topological invariant of the time-reversal
symmetric Kitaev chain.

> It agrees with the partition function of Pin TQFT on RP? (Pin~
structure), and can detect the Zg classification.




