Topological Features on a Triangular Lattice

Võ Tiến Phong

University of Pennsylvania

in collaboration with

Zachariah Addision, Eugene Mele, Seongjin Ahn, Hongki Min, Ritesh Agarwal

> QUY NHƠN, VIỆT NAM July 2018

Outline of Talk

\checkmark Motivation

- $\checkmark \quad \text{Band structure of a triangular lattice}$
- ✓ Anomalous Hall effect
- $\checkmark \quad \text{Optical control}$
- ✓ Outlook

Outline of Talk

✓ Motivation

- ✓ Band structure of a triangular lattice
- ✓ Anomalous Hall effect
- ✓ Optical control
- ✓ Outlook

Dirac-Weyl Materials

A recent general trend to search for Dirac-Weyl materials has been to consider symmetries in complicated crystal space groups

Dirac-Weyl Materials

A recent general trend to search for Dirac-Weyl materials has been to consider symmetries in complicated crystal space groups

Armitage, N. P., E. J. Mele, and Ashvin Vishwanath. "Weyl and Dirac semimetals in three-dimensional solids." *Reviews of Modern Physics* 90.1 (2018): 015001.

In free-standing form, the lattice is invariant under *z*-mirror symmetry.

In free-standing form, the lattice is invariant under *z*-mirror symmetry.

In free-standing form, the lattice is invariant under *z*-mirror symmetry.

Line nodes are protected by mirror symmetry in the absence of SOC.

Feng, Baojie, et al. "Experimental realization of two-dimensional Dirac nodal line fermions in monolayer Cu2Si." *Nature communications* 8.1 (2017): 1007.

Cu₂Si on Cu(111) ARPES Measurements

Minimal Band Theory

Minimal Band Theory

Statement of Purpose

To explore the topological properties of a triangular lattice with a vector degree of freedom on each site

Outline of Talk

✓ Motivation

✓ Band structure of a triangular lattice

- ✓ Anomalous Hall effect
- ✓ Optical control
- ✓ Outlook

Hopping Matrix Elements

Hopping Matrix Elements

Cartesian Representation:

х

$$\begin{array}{c} \mathbf{y} \\ \mathbf{y} \\ \mathbf{y} \end{array} \quad T(\phi) = \begin{pmatrix} t_{xx} & t_{xy} & 0 \\ t_{yx} & t_{yy} & 0 \\ 0 & 0 & t_{zz} \end{pmatrix}$$

Hopping Matrix Elements

Cartesian Representation:

Axial Representation:

$$\Gamma(\phi) = \begin{pmatrix} \gamma_{-1,-1} & 0 & \gamma_{-1,1} \\ 0 & \gamma_{0,0} & 0 \\ \gamma_{1,-1} & 0 & \gamma_{1,1} \end{pmatrix}$$

Cartesian Representation:

$$\mathcal{H}_{xyz}(\mathbf{k}) = h_0(\mathbf{k})\mathcal{I} + \Delta(\mathbf{k})L_z \cdot L_z + \mathbf{h}(\mathbf{k}) \cdot \mathbf{L}$$

Cartesian Representation:

$$\mathcal{H}_{xyz}(\mathbf{k}) = h_0(\mathbf{k})\mathcal{I} + \Delta(\mathbf{k})L_z \cdot L_z + \mathbf{h}(\mathbf{k}) \cdot \mathbf{L}$$

• The Hamiltonian is **real**. This implies that $h_y(\mathbf{k}) = 0$

Cartesian Representation:

$$\mathcal{H}_{xyz}(\mathbf{k}) = h_0(\mathbf{k})\mathcal{I} + \Delta(\mathbf{k})L_z \cdot L_z + \mathbf{h}(\mathbf{k}) \cdot \mathbf{L}$$

- The Hamiltonian is **real**. This implies that $h_y(\mathbf{k}) = 0$
- Line nodes occur at intersections of L = 0 and orthogonal manifolds

Cartesian Representation:

$$\mathcal{H}_{xyz}(\mathbf{k}) = h_0(\mathbf{k})\mathcal{I} + \Delta(\mathbf{k})L_z \cdot L_z + \mathbf{h}(\mathbf{k}) \cdot \mathbf{L}$$

- The Hamiltonian is **real**. This implies that $h_y(\mathbf{k}) = 0$
- Line nodes occur at intersections of L = 0 and orthogonal manifolds
- Other nodes occur at **exceptional points**

Axial Representation:

$$\mathcal{H}_{l_z=\pm 1} = \begin{pmatrix} 0 & d(\mathbf{k}) \\ d^*(\mathbf{k}) & 0 \end{pmatrix}$$

Axial Representation:

$$\mathcal{H}_{l_z=\pm 1} = \begin{pmatrix} 0 & d(\mathbf{k}) \\ d^*(\mathbf{k}) & 0 \end{pmatrix}$$

• d_z term is prohibited by \mathcal{TC}_2 symmetry

Axial Representation:

$$\mathcal{H}_{l_z=\pm 1} = \begin{pmatrix} 0 & d(\mathbf{k}) \\ d^*(\mathbf{k}) & 0 \end{pmatrix}$$

- d_z term is prohibited by \mathcal{TC}_2 symmetry
- C_3 symmetry guarantees degeneracies at the Γ , *K*, and *K'* points

Axial Representation:

$$\mathcal{H}_{l_z=\pm 1} = \begin{pmatrix} 0 & d(\mathbf{k}) \\ d^*(\mathbf{k}) & 0 \end{pmatrix}$$

- d_z term is prohibited by \mathcal{TC}_2 symmetry
- C_3 symmetry guarantees degeneracies at the Γ , *K*, and *K'* points

$$\mathcal{H}_{l_z=\pm 1}(q) = \begin{pmatrix} 0 & q_{-}^2 \\ q_{+}^2 & 0 \end{pmatrix}_{\Gamma}, \begin{pmatrix} 0 & q_{+} \\ q_{-} & 0 \end{pmatrix}_{K,K'}$$

Comparison to Graphene

 $\arg(d(\mathbf{k}))$

Graphene: $J = \pm 1$ nodes

Partners at K and K'

Comparison to Graphene

 $\arg(d(\mathbf{k}))$

Graphene: $J = \pm 1$ nodes

T-lattice: J = -1,2 nodes

Partners at K and K'

Partners at K, K', and Γ

Outline of Talk

✓ Motivation

✓ Band structure of a triangular lattice

✓ Anomalous Hall effect

✓ Optical control

✓ Outlook

Gapping Degeneracies

Recall that in order to observe anomalous charge Hall transport on the honeycomb lattice, one must use valley-antisymmetric mass terms:

 $\mathcal{H}_{ ext{Haldane}} \propto au_z \sigma_z$ $\mathcal{H}_{ ext{Kane-Mele}} \propto au_z \sigma_z s_z$

Recall that in order to observe anomalous charge Hall transport on the honeycomb lattice, one must use valley-antisymmetric mass terms:

 $\mathcal{H}_{ ext{Haldane}} \propto au_z \sigma_z$ $\mathcal{H}_{ ext{Kane-Mele}} \propto au_z \sigma_z s_z$

Or using non-equilibrium states via valley polarization.

Recall that in order to observe anomalous charge Hall transport on the honeycomb lattice, one must use valley-antisymmetric mass terms:

 $\mathcal{H}_{\mathrm{Haldane}} \propto au_z \sigma_z$ $\mathcal{H}_{\mathrm{Kane-Mele}} \propto au_z \sigma_z s_z$

Or using non-equilibrium states via valley polarization.

However, in our model, anomalous charge transport can be directly accessed using site-localized, valley-symmetric perturbations.

Gapping Degeneracies

σ_z perturbation

Breaks time-reversal symmetry, but preserves mirror symmetry

Gapping Degeneracies

σ_z perturbation

Breaks time-reversal symmetry, but preserves mirror symmetry

Berry Curvature

Graphene

Triangular lattice

Hall effect weakly screened

Band Structure

Hall effect weakly screened

Võ Tiến Phong

Weak coupling

Weak coupling

Outline of Talk

✓ Motivation

- ✓ Band structure of a triangular lattice
- ✓ Anomalous Hall effect
- ✓ Optical control
- ✓ Outlook

Dipole Approximation:

$$\mathcal{H}_{\rm int}(t) = -e\mathbf{E}\cdot\mathbf{r}$$

Dipole Approximation: $\mathcal{H}_{int}(t) = -e\mathbf{E} \cdot \mathbf{r}$ with circularly polarized light: $\mathcal{H}_{int}(t) = -e\left(\mathbf{r} \cdot \mathbf{E} \cos \omega t - s\hat{n} \cdot [\mathbf{r} \times \mathbf{E}] \sin \omega t\right)$

Dipole Approximation: $\mathcal{H}_{int}(t) = -e\mathbf{E} \cdot \mathbf{r}$ with circularly polarized light: $\mathcal{H}_{int}(t) = -e\left(\mathbf{r} \cdot \mathbf{E} \cos \omega t - s\hat{n} \cdot [\mathbf{r} \times \mathbf{E}] \sin \omega t\right)$ $\mathcal{H}_{int}^{z}(t) = \hbar\omega_{1}(L_{+}e^{-is\omega t} + L_{-}e^{+is\omega t})$

Effective Hamiltonian in Zero-Photon Sector:

$$\begin{split} \mathcal{H}_{\rm eff}(\mathbf{k}) &= \mathcal{P}\mathcal{H}_0(\mathbf{k})\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega}\mathcal{P}L_+\mathcal{Q}L_-\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega}\mathcal{P}L_-\mathcal{Q}L_+\mathcal{P} \\ &= \begin{pmatrix} h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega} & h_1(\mathbf{k}) \\ h_1^*(\mathbf{k}) & h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega} \end{pmatrix}. \end{split}$$

Effective Hamiltonian in Zero-Photon Sector:

$$\begin{aligned} \mathcal{H}_{\rm eff}(\mathbf{k}) &= \mathcal{P}\mathcal{H}_0(\mathbf{k})\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega}\mathcal{P}L_+\mathcal{Q}L_-\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega}\mathcal{P}L_-\mathcal{Q}L_+\mathcal{P} \\ &= \begin{pmatrix} h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega} & h_1(\mathbf{k}) \\ h_1^*(\mathbf{k}) & h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega} \end{pmatrix}. \end{aligned}$$

$$\delta(\mathbf{k}) = \frac{e^2 \alpha^2 I \hbar \omega}{c \epsilon_0 (\Delta(\mathbf{k}) - \hbar \omega) (\Delta(\mathbf{k}) + \hbar \omega)}.$$

Effective Hamiltonian in Zero-Photon Sector:

$$\begin{aligned} \mathcal{H}_{\rm eff}(\mathbf{k}) &= \mathcal{P}\mathcal{H}_0(\mathbf{k})\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega}\mathcal{P}L_+\mathcal{Q}L_-\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega}\mathcal{P}L_-\mathcal{Q}L_+\mathcal{P} \\ &= \begin{pmatrix} h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega} & h_1(\mathbf{k}) \\ h_1^*(\mathbf{k}) & h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega} \end{pmatrix}. \end{aligned}$$

$$\delta(\mathbf{k}) = \frac{e^2 \alpha^2 I \hbar \omega}{c \epsilon_0 (\Delta(\mathbf{k}) - \hbar \omega) (\Delta(\mathbf{k}) + \hbar \omega)}.$$

• Response is non-linear in input frequency

Effective Hamiltonian in Zero-Photon Sector:

$$\begin{aligned} \mathcal{H}_{\rm eff}(\mathbf{k}) &= \mathcal{P}\mathcal{H}_0(\mathbf{k})\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega}\mathcal{P}L_+\mathcal{Q}L_-\mathcal{P} + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega}\mathcal{P}L_-\mathcal{Q}L_+\mathcal{P} \\ &= \begin{pmatrix} h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) - \hbar\omega} & h_1(\mathbf{k}) \\ h_1^*(\mathbf{k}) & h_0(\mathbf{k}) + \Delta(\mathbf{k}) + \frac{\hbar^2 \omega_1^2}{\Delta(\mathbf{k}) + \hbar\omega} \end{pmatrix}. \end{aligned}$$

$$\mathbf{k} = c\epsilon_0 (\Delta(\mathbf{k}) - \hbar\omega) (\Delta(\mathbf{k}) + \hbar\omega)$$

- Response is non-linear in input frequency
- To produce a gap of 100 meV, one needs an input frequency in the range of TW/cm²

Outline of Talk

✓ Motivation

- ✓ Band structure of a triangular lattice
- ✓ Anomalous Hall effect
- ✓ Optical control

✓ Outlook

✓ Coupling of light to itinerant moments

Future Work

✓ Coupling of light to itinerant moments

✓ Accounting for spin-orbit coupling

Future Work

✓ Coupling of light to itinerant moments

- ✓ Accounting for spin-orbit coupling
- ✓ Predicting material realization

✓ The triangular lattice with p orbitals has protected line and point nodes

- ✓ The triangular lattice with p orbitals has protected line and point nodes
- ✓ The point nodes at the high-symmetry points carry compensating twists at high order

- ✓ The triangular lattice with p orbitals has protected line and point nodes
- ✓ The point nodes at the high-symmetry points carry compensating twists at high order
- ✓ Valley-symmetric mass gap produces an anomalous Hall effect

- ✓ The triangular lattice with p orbitals has protected line and point nodes
- ✓ The point nodes at the high-symmetry points carry compensating twists at high order
- ✓ Valley-symmetric mass gap produces an anomalous Hall effect
- ✓ Coupling to CPL produces such a nontrivial gap

I would like to thank my advisor, Prof. Eugene Mele, and collaborators for guidance and insights.

I would like to thank my advisor, Prof. Eugene Mele, and collaborators for guidance and insights.

I am partially supported by the P.D. Soros Fellowships for New Americans.

I would like to thank my advisor, Prof. Eugene Mele, and collaborators for guidance and insights.

I am partially supported by the P.D. Soros Fellowships for New Americans.

Thank **you** for the opportunity to present our work here in Việt Nam.

