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Symmetry&lTopology in CMP

“New?” classification of phases of matter
(quantum many-body systems)

Topologically ordered phases
Symmetry-Enriched Topological (SET) phases

Symmetry-Protected Topological (SPT) phases

incl. Topological Insulators & Topological Superconductors

Classification of gapped phases



Symmetry&lTopology in CMP

“New?” classification of gapless, critical phases?

Gapless phases appear at quantum critical points

e.g. (quantum) transverse Ising model
H=—>» oiof — I_ZJ;C
(J.k) J

ordered phase [ = [ disordered phase

A I

Quantum Critical Point

critical point = RG fixed point
relevant perturbation = gap



Gapless Critical Phases

But quantum critical phases often appear in
cond-mat physics without any apparent fine-tuning

- metallic systems

- Dirac/Weyl semimetals

Temp. Temp.

- B-YbAIB4 B o

Phase Transtion

Chemical Composition \_ oa Chemical Composition
QCP Pressure Quantum Critical  praggyre

[Nakatsuji Group, ISSP]



Gapless Critical Phases

Kagome spin liquid (§=1/2 antiferromagnet):
Dirac spin liquid?

PHYSICAL REVIEW X 7, 031020 (2017)

Signatures of Dirac Cones in a DMRG Study of the Kagome Heisenberg Model

Yin-Chen He,'** Michael P. Zaletel,***® Masaki Oshikawa,™ and Frank Pollmann'~"’

Heisenberg Free fermion
1 I I I
2.0 .y

o ey wn
— 1.5 ® o % b 1 r
| e °° o o s \
i ; : \ / \
=< °
E 1.0F ° ° 7 \ (1 \‘
|

R/ . S— O A @ N e e nen
< 2.0F 1 2.0, o * »
 15) 4 150 g, - s p
Z 100 -1 1.0 R S ‘ -
=05t josfo " o8

210 05 o'.o, 05 10 -1.0 —05 00 05 1.0 ’ \ > e 9 5

1 1 1 1

2k, /= ‘7k1 by
W 20F ' ' 2,0F U v ”Q’\’.\.\ ‘\’

~ 1.5 1.5F
|
; 1.0F ' V
Y
-~ 0.5'-
A (e)

1.0
0.5}F
| 0.0 1 1 0,
-05 00 05 10 1.5 —05 OO 0.5 10 1.5
k'_)',"".'f ko /o




Gapless Critical Phases

- Why are they stable!?

- Classification/characterization of these phases



Lieb-Schultz-Mattis Type Theorems

- Many-particle system on a periodic lattice (& periodic b.c.)

- Particle number conserved more general cases:
-V Particles per unit cell Po,Watanabe, Cho, Hsieh,....
gapless
, P gapped, with unigue-ground state
q
gapped, with g-fold degenerate ground states
LSM 1961
Affleck-Lieb 1986 spontaneous symmetry breaking
M.O.-Yamanaka-Affleck 1997 .
M.O. 2000, Hastings 2004, ... topological order

This explains the stability of the gapless phases to some extent.
Recent applications: this also constrains the universality class of the
gapless phases



Lieb-Schultz-Mattis Type Theorems

- Many-particle system on a periodic lattice (& periodic b.c.)

- Particle number conserved more general cases:
-V Particles per unit cell Po,Watanabe, Cho, Hsieh,....

gapless
1) — p < gapped, with unique-ground state
q
gapped, with g-fold degenerate ground states

\spontaneous symmetry breaking

topological order

This explains the stability of the gapless phases to some extent.
Recent applications: this also constrains
the universality class of the gapless phases



“LSM” constraint on critical phases

- Many-particle system on a periodic lattice (& periodic b.c.)

- Particle number conserved

- V particles per unit cell
low-energy limit

_ gapless | m——]pe- cOnformal field theory
) — B /

q symmetry-allowed
perturbations

gapped, with unigue-ground-state

gapped, with g-fold degenerate ground states

\spontaneous symmetry breaking

topological order



“LSM” constraint on critical phases

For a system subject to a LSM-type constraint,
the conformal field theory describing its gapless phase
cannot be arbitrary

The conformal field theory must inherit the
“ingappability” (LSM-type constraint)
< anomaly matching

Furuya-M.O. 2017 for SU(2) in |+1d
Yao-Hsieh-M.O. 2018 for SU(N) in 1+1d



SU(2) AFM chains

Spin-$ antiferromagnetic chain with the global SU(2) and
lattice translation symmetries

_—» — — — 2 — — ]
H=> |8 Sjs1+Jg (S Sj1) + 18 Sjya-e
j - -

Lorentz invariance is expected;
when gapless, low-energy physics should be described

by a SU(2) symmetric CFT

SU(2)k Wess-Zumino-Witten theory
characterized by “level” k = 1,2, 3, ...




Our Claim

In the presence of the SU(2) and
lattice translation (by one site) symmetries,

S =1/2,3/2,5/2,...

- The system is gapped with a SSB of
the translation symmetry (doubly degenerate GS)

OR -The system is gapless, described by
SU(2)x WZW with an odd k

S=1.23,...

- The system is gapped (can be without SSB)
OR -The system is gapless, described by

SU(2)x WZW with an even k



Lieb-Schultz-Mattis theorem

In the presence of the U(Il) and lattice translation
symmetries,

S =1/2,3/2,5/2,...

- The system is gapped with a SSB of
the translation symmetry (doubly degenerate GS)
OR -The system is gapless

S=1.23....

- The system is gapped (can be without SSB)
OR -The system is gapless
(empty statement!)



Lieb-Schultz-Mattis Theorem

Spin-$ antiferromagnetic chain with the global U(1) and
lattice translation symmetries

—

S5 o - 2 S5 o ]
H=> |8 Sjs1+Jg (S Sj1) + 18 Sjpa-e
j -

if S is a half odd integer,

- the system is gapless
OR
- the ground states are (at least) two-fold degenerate

gapped (massive) system-witirgaanique ground state

cf.) Haldane gap for integer $




Proof

“Twist operator” Apply to the ground state
, of a finite ring of L sites
()
U = exp Z]Sz |\IJO>

(W[ U~ HU|Wo) — (o[ H[ o) = O(;)

Wy) =U|PYy) isalow-energy state!

But this may be just because |\111> ~ ‘\Ifo> !



Proof

T : Lattice translation operator

P
TU = UTexp | 2% Z S —2miS7 | = (=1)5UT

(ifz S7 =0)

belongs to a different eigenvalue
U,) = U|W 8 :
| 1> U‘ O> of T and thus

(U1|WPy) =0

on-site U(l) and lattice translation symmetries



Haldane Conjecture

Heisenberg Antiferromagnetic Chain
H=J» S Sjm
J

S =1/2,3/2,5/2,...

- The system is gapless (massless)
$=123 ...

- The system is gapped (massive)

Consistent with the LSM theorem!
(Affleck-Lieb 1986)

|18



Our Claim

In the presence of the SU(2) and
lattice translation (by one site) symmetries,

S =1/2,3/2,5/2,...

- The system is gapped with a SSB of
the translation symmetry (doubly degenerate GS)

OR -The system is gapless, described by
SU(2)x WZW with an odd k

S=1.23,...

- The system is gapped (can be without SSB)
OR -The system is gapless, described by

SU(2)x WZW with an even k



“Symmetry Protected” gapless phases

SU(2) + Lorentz + lattice translation symmetries

SU(2)x WZW

k: odd




SU(2) WZW theories

Lorentz-invariant critical point:
expect chiral SU(2) x SU(2) symmetry

Natural action with the SU(2) x SU(2) symmetry
1

%0 = 532

d°z Tr[(g _18u9)2]
g: SU(2) matrix-valued field

However, RG implies that this theory is
always massive (gapped) “asymptotic freedom”



Wess-Zumino term
S=5y+ kl'wz

1

Twz = - >z €7*Tr[(g710;9)(9710;9) (9~ Org)]
T JB

original space-time:
surface of the sphere

uniqueness of klwz
(modulo 2T1T)
= k:integer

B: (inside) sphere RG has a nontrivial fixed point
if k0 — gapless critical phase



Kac-Moody algebra

. L
[Jﬁ.s Jsz] — 'Z‘fabCJSer T §knoabon+m,0

This “includes” Virasoro algebra (conformal invariance)

and is very powerful — determines scaling dimensions

(critical exponents) etc.

e OF , _dG+1) o<i<k
k+2 7T k42 2

central charge scaling dimension of spin-j field



Spin chain and WZW
S’; ~ J_,; + const.(—l)itr(g(?)

Lattice translation symmetry
& discrete Z; symmetry G — —(

If there is the Z; symmetry,
we should be able to consider a projection
to Z-symmetric subspace!



Projection vs. Path Integral

(imaginary) A 7+ periodic
time

space anti-
periodic

- 1
7P = Tr[Pye M) = §[Z+ + Z7]




Modular Invariance

7

Partition function of a consistent CFT must be
invariant under modular transformations
generated by

S:17——1/7

T:7—=>7174+1




Orbifold Construction

The “projected” partition function Z+Proi is not
modular invariant by itself — must be supplemented
by twisted sectors

Z, =(14+S8+ TS)Z_Iij — ZWZW

The resulting partition function represents
the “Z, orbifold” of the original SU(2)x WZW theory

cf.) S. Ryu et al.
protection of edge states «— gapped SPT phase



Global Anomaly

The Z> orbifold should be modular invariant
by construction — but this is NOT always the case!

The Z; orbifold is modular invariant if k is even,
but it is modular NON-invariant if k is odd

Gepner-Witten 986

STRING THEORY ON GROUP MANIFOLDS

Doron GEPNER and Edward WITTEN

Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544, USA

Received 26 May 1986



What does this mean!?

If the orbifold is modular invariant, we can consider
projection to the symmetric sector, and open a gap
within that sector

However, if it is modular non-invariant, we cannot
open the gap to obtain a unique ground state
within the symmetric sector

Global anomaly =
“ingappability” in the presence of the symmetry
(S. Ryu et al. on edge theory)



Selection Rule

Perturb SU(2)x WZW with SU(2) and Z;-symmetric
relevant operators; suppose the RG flow reaches
SU(2)w WZW

if k is even, we should be able to consider
the projection to Z; symmetric sector;
the RG flow can be understood in terms of

the Z> orbifold — k’ is also even

if k is odd, the IR fixed point should also have the
global anomaly (otherwise contradicts with LSM)

— Kk’ is also odd



In terms of RG...

SU(2)x WZW

k=k" mod 2

SU(2)ir WZW

SU(2)o WZW is identified with
gapped phase with a unique ground state



Spin Chains and WZW

There is a special integrable (Bethe-ansatz solvable)
spin chain model for any $
(Takhtajan-Babujian model)

eg.for S=I: Hrp = Z Sj 9 — (gj - g’j)z

ol i

It is known that this can be described by
SU(2)2s WZW

Other models can be regarded as
Takhtajan-Babujan + perturbations




Examples

In fact, all the spin chain examples (known to us)
are consistent with our “selection rule”

Hiygs = Y [J155-S541+J3{(5;-1-5;)(S;-Sj+1)+H.c.}]

realizes SU(2)2s even though this is not integrable
Michaud et al. 2012

However, it is important to emphasize that
our selection rule is valid only in the presence
of the lattice translation (by one site) symmetry



Our Claim

In the presence of the SU(2) and lattice translation
symmetries,

S =1/2,3/2,5/2,...

- The system is gapped with a SSB of
the translation symmetry (doubly degenerate GS)

OR -The system is gapless, described by
SU(2)x WZW with an odd k

S=1.23,...

- The system is gapped (can be without SSB)
OR -The system is gapless, described by

SU(2)x WZW with an even k



Lieb-Schultz-Mattis Theorem

You CAN open a gap for odd k, but only if you include
both symmetric and antisymmetric sectors

— degenerate ground states
= spontaneous breaking of the Z; symmetry

“Lieb-Schultz-Mattis theorem” for SU(2)x WZW
with an odd k



Breaking the Z; symmetry

Higes = Hu,- J3—J15Z 1)7S; - S;.

0+0 breaks the lattice translatlon symmetry
explicitly (one site—two sites)
This is equivalent to breaking of the discrete
Z; symmetry in the W.ZW theory

For $=1,a RG flow from SU(2), WZWV to
SU(2)1 WZW was indeed confirmed numerically

Kitazawa-Nomura 1999



SU(N) chains
Huar = J Z 535520' T ...

(i,7),,3

[53:3* S;';é] = 04, (535?';5 - 53536)

Same strategy as in SU(2):
orbifolding of the Zn symmetry?

not powerful enough.... (can’t reproduce LSM)
more systematic approach!?



Symmetry of the “SU(N)” chain

... is not exactly SU(N)

e?™mIN] € SUN) m=0,1,...,N —1

“center” of SU(N) = Zn do not change the quantum state

On-site symmetry of SU(N) chain:
PSU(N) = SU(N)/Zn

lattice translation
Symmetry of the system: /
PSU(N) x Z



Gauging the Symmetry
Orbifolding = gauging the symmetry

't Hooft anomaly:
anomaly obstruction in gauging a global symmetry

NO anomaly for “on-site” symmetry of a lattice model,
since the corresponding gauge field can be introduced
at the lattice level in a perfectly well-defined way

However, the translation symmetry is NOT an “on-site”
symmetry, and could show a 't Hooft anomaly
< LSM constraint

Cho-Hsieh-Ryu 2017



Classification of 't Hooft anomaly

't Hooft anomaly for PSU(N)XZ in 1+1 D
& “ingappable” phase in |+1D protected by PSU(N)xZ

& SPT phase with PSU(N)XZ symmetry in 2+1 D

12

H?(PSU(N) x Z,U(1)) = H*(PSU(N),U(1)) @2

SPT phase protected by/

PSU(N) only
(anomalous edge state not
realizable in |+1D)

SPT phase protected by
PSU(N) & Z
& mixed anomaly

< LSM constraint



LSM index for SU(N) chain
mixed anomaly factor H*(PSU(N),U(1)) = Zn

general SU(N) spin representation at each site:

Young tableau

ZIn = (total number of boxes in the Young tableau) mod N
c H*(PSU(N),U(1))
In #0 = LSM constraint

(gapless or Zn -fold degenerate g.s.)
reproduces Affleck-Lieb 1986



“LSM” constraint on critical phases

- Many-particle system on a periodic lattice (& periodic b.c.)

- Particle number conserved

- V particles per unit cell
low-energy limit

_ gapless | m——]pe- cOnformal field theory
) — B /

q symmetry-allowed
perturbations

gapped, with unigue-ground-state

gapped, with g-fold degenerate ground states

\spontaneous symmetry breaking

topological order



CFT for Gapless Critical Phases

SU(N) Wess-Zumino-Witten CFT, level k
g(z,t) € SU(N)

Lattice translation symmetry
& g — 627T7me/Ng

Mixed PSU(N)-Zn anomaly: km  mod NN

Anomaly matching with the lattice model

km =71y mod N
(km = total number of boxes in YT mod N)



Symmetry-Protected Critical Phases

with PSU(N) X translation symmetry:

N distinct symmetry-protected classes
characterized by %&m mod N

N=2, m=1 = recover the previous result on SU(2)



Application to Enlarged Symmetry

Systematic description of LSM constraint in terms of
mixed anomaly: handling of enlarged symmetry

Lattice model: PSU(N) X translation, with Zn

SU(N ) WZW with lattice translation ¢ — 2™ /N

Consider N'/gcd(N’, k’m’) copies = anomaly free

Anomaly matching requires

the lattice model is also anomaly-free

N/
T =0 d N
Ngcd(N’,k’m’) o




Application to Enlarged Symmetry

N/
Z =0 d N
Ngcd(N’,k’m’) o

Example:
N=2, N'=3 (PSU(2) — PSU(3) enlargement)
Zn must be even (integer spin per unit cell!)



Higher Dimensions: DQCP

Senthil-Vishwanath-Balents-Sachdev-Fisher 2003~

5=1/2 Square Lattice Antiferromagnet

W)

Neel phase Valence-Bond Crystal phase

Quantum Critical Point between the two!?



LGW theory of multiple order parameters :
First order Slide b)'

frransition

— | Sachdev
(F )

vbs

VBS order
g

< \P vbs >

VBS order

Coexistence

Neel order

g
~ "disordered"
<§0> < \P vbs >
Neel order VBS order

g



LGW theory of multiple order parameters :
First order Slide b)'

frransition

3 Sachdev

VBS order
g

< \P vbs >

VBS order

Coexistence

Neel order

"disordered"

» <
\ceboTder ‘ LSM-forbidden




Anomaly at DQCP

PHYSICAL REVIEW X 7, 031051 (2017)

Deconfined Quantum Critical Points: Symmetries and Dualities

Chong Wang,u Adam Nahum,™* Max A. Metlitski,”>* Cenke Xu,*” and T. Senthil’®

|D.s’parmus’nt of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
*Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
! Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
‘Theoretical Physics, Oxford University, 1 Keble Road, Oxford OX1 3NP, United Kingdom
Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada
*Department of Physics, University of California, Santa Barbara, California 93106, USA
(Received 4 May 2017; revised manuscript received 25 July 2017; published 22 September 2017)

Intrinsic and emergent anomalies at deconfined critical points

Max A. Metlitski' and Ryan Thorngren?

! Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
“Department of Mathematics, University of California, Berkeley, California 94720, USA
(Dated: July 26, 2017)



Summary

Symmetry & Topology has interesting implications

not only on gapped phases but also on gapless critical
phases

When LSM-type theorem is applicable, it does not only
protect gapless nature, but also constrains possible
universality classes (“anomaly matching”)

LSM-type constraint corresponds to “mixed 't Hooft
anomaly” between the on-site and translation
symmetries

N distinct symmetry-protected classes of gapless
critical phases corresponding to SU(N)« in |+1D
Many interesting questions to be explored



