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Introduction

& Fractional quantum Hall eftect
¢ Non-relativistic” Geometry
¢ Chern-Simons theory

Girvin-MacDonald-Platzman mode

¢ | owest Landau Level
¢ W algebra
¢ Single Mode Approximation

Bimetric theory of FQH states

¢ Bimetric theory

¢ How does it work 7
¢ (Consistency checks
¢ (Geometric guench

Conclusions and open directions



QUANTUM HALL BAR
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Bold-coated graphene quantum Hall bar,
Phygical Meagurement Laboratory (2014)



FRACTIONAL QUANTUM HALL EFFECT

T~35mK
[ n=1.0x10"" cm™? ot
3F u=10x10°cm?Vs 173

H=) Uz
®

1/4

il /? * Fractional Hall conductance
6/23 _ . . .
625 *x Fractionally charged quasiparticles
MAGNETIC FIELD T] * Fractional statistics

* Topological degeneracy

*lll

Laughlin 983 Arovag, Schrieffer, Wilezek; Halperin (984 Haldane, Rezayi 1985



Al THE PLATEAU

Gap to all excitations (charged and neutral)

All dissipative transport coetticients vanish
Parity and time-reversal broken

No Lorentz invariance

Quantized non-dissipative transport coefficients

Not uniquely characterized by the filling factor

62

N =vNy Oay =V



SPECTRUM OF THE FOQH

el Lowest Landau level

Fractional quantum Hall problem is often treated in the topological limit

hwc — OO ACoulomb — OO

In this limit Hamiltonian is 0 and dynamics occurs only at the edge

I would like to understand the FQH away from the topological limit




TOPOLOGICAL LIMIT



GEOMETRY

Geometry is encoded into time-dependent metric

ds® = g;:(x,t)dz" dz’

It IS more convenient to use vielbeins

A B _
gij = €; €7 0AB g=e-e

There is a SO(2) redundancy
Corresponding ""gauge field” is the spin connection Wy,

Spin connection is a * vector potential” for curvature

R .
5 — 81602 — 82w1 wWo GABezBa()@f;l



CHERN - SIMONS

Determines
filling v = k!

/

HEORY OF FOQH STATES

electric charge of mean
. | . . Wen-Zee
constituent particles  orbital spin form

q/ L

k
ada

“5 ),

quantum
“emergent” gauge field

S

adA ° adw

27 /‘ 27 /‘

external

SO(2) spin connection
e/m field (2) sp

Wen-Zee term couples the TQFT to the geometry ot ambient space

Breaks Lorentz downto SO(2)

AB

since Wy = W, €AB

Wen, Zee 199



WEN - ZEE TERM

Wen-Zee term couples the electron density to curvature
v VS
— B+ —R
P o A

Implies a global relation on a compact Riemann surface

Euler

N = VN¢ + VS§ “ characteristic

Quantum number S = 2s Is called Shift

Also describes the quantum Hall viscosity

o
P

<TmTwy> = WNH ng = h

Haldane 1983 Wen, Zee 1991 Avron Zograf Seiler 1995 Read 2009



TGRAVITATIONAL AHARONOV - BOHM EFFECT

/] § QQWiS(I)R\Ij

Wen Zee 1992



Aharonov-Bohm

“— phases

Mutual statistics™

O /
Chiral edge modes:

tunneling exponents,
A/thermal Hall conductance
QrrrrrrsarsEEsEEEEEEEE NI R EEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

W[A CU] — /Da/eis[(“A?w] > Linear response:
?

Hall conductance, Hall viscosity,...

N — V]\fqb 1+ S Ground state degeneracy k

*after AB phases are subtracted



BEYOND TQFT (THEORETICAL) TOOLS

Beyond TQFT we face a strongly interacting problem

e [rial states

e Flux attachment (composite bosons and fermions)

* Exact diagonalization

e Bimetric theory



SPECTRUM OF FOQH PROBLEM
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At E ~ gap there is a collective mode



OBSERVATION OF THE GMP MOD
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Kang, Pinczuk, Dennig, Pfeiffer, West 200 Kukughkin, Smet, Searola, Umangky, von Klitzing 2009



GIRVIN - MACDONALD - PLATZMAN MODE

The electron density operator Z; = xj +1Y; is the electron coordinate
Nel kz;+kz LLL projection Nel 1D kz
pk) => e = —  pk) =) e ie

Projected densities do not commute, instead they forma W, algebra

500, 7)) = 2isin | Sk x al sk + @

This algebra is believed to be at the heart of the Lowest Landau level problem

GMP have argued that the collective mode is a projected density wave

k) = p(k)[0)

Girvin, MacDonald, Platzman, 1985



GIRVIN - MACDONALD - PLATZMAN MO

At long wavelengths the GMP state takes form

) ~ |E2TF + B2T~ + ... ||0)

The spin-2 operators T form an sl(2,R) algebra

[T ,T—] — 9oL [TL] e
o
N
Angular momentum
In the LLL 7' are difterential operators

T_l_O(ZZZ’ T_oczai.




HOW GOOD IS SMA !

k| HIE)

SMA A(k) = <<k\k>

Exact energy spectrum

SMA /

IS very accurate at |
long wavelengths |

0 5 10 15 k¢

Repellin, Neupert, Papi¢, Regnault

We will construct a long wavelength eftfective theory of GMP mode
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[HE GMP MO

* Universally present in fractional QH states

* Absent in integer QH states

* Angular momentum or spin” 2, regardless of

mIicroscopic detalls

*

—ffective theory of the GMP mode should to be a

theory of a massive spin-2 excitation

DE
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SPIN-2 DEGREE OF FREEDOM

A spin-2 mode is described by a symmetric 2x2 matrix g;; with det gi; = 1

Can be visualized as a solution of equation ~ g;jx'z’ =1

Sij = 0ij 8ij

Together with the ambient metric




BIMETRIC GEOMETRY

The spin-2 mode is described by a symmetric tensor  §;;(x,t)

Subject to a constraint det g;; = det g;;
Introduce the ““vielbein”  g;; = 048€; €

§5(2) spin connection and curvature follow

A

R X X . 1 P
5 = 01w — Oawq Wo = §€a663806?

Not the same as two copies of Riemannian geometry
Diff x Diff — Diff gjag

This geometry involves two metrics &ij, &ij , hence bimetric*

de Rham, Gabadadze, Tolley

*Re-appeared recently in theories of massive gravity 200



BIMETRIC THEORY

Chern-Simons theory interacting with fluctuating metric &:;(x,t)

Pronounced: sigma”

k 1 S C A/A A
L = —ada Ada adw adw — H|g; g]
47 2T 2T 2T
e
Integrate out the internal gauge field @ '::m"tonian
H = (88”7 —)°

2

L = El[A,g] + Ebm[g;Aag]

Where L1]A,g] contains no dynamics and is discarded
For IQH k£ =1 there is no intra-LL dynamics

L=L1]A;qg
AG, Son 2017



BIMETRIC THEORY

Effective theory of the spin-2 mode at long wavelengths

VS w A mr. 19 2
L= A ava— - (&ij8" — 7
2 2
n »
“‘J“’ “"n
DG — ti;pe Cerm - Hamiltonian

q guantized phenomenological parameter
71l the energy scale of the spin-2 mode

’}/ phenomenological parameter responsible for the nematic transition

AG, Son 2017



GEOMETRIC OPERATORS

Density and current operators acquire geometric meaning

Fluctuations of electron density = fluctuations of local Ricci curvature

0 = 2R
4
Fluctuations of electron current = fluctuations of “"gravi-electric” field
: 149
-7 zk
] Ek
27T

To the leading order In k, everything is determined by ¢
Continuity equation holds identically

a()R -+ EZkangk =0



gapped symmetric” phase gapless nematic phase

gij = 0ij Jij = §§§)) (7) # 0ij



LINEARIZATION

In flat space we chose the parametrization

A QQ Q1 Q= Q1 +1Q2
S = O (@1 —@z) 0—Q

and linearize around isotropic configuration

Bij = 0ij Q=0
to find Gap of the GMP mode
4
SPp =~~~ m(l—r
Lbm & ZzQQ ( 9 )‘Q|2

Maciejko, Hsu, Kivelgon, Park, Sondhi 2013 You, Cho, Fradkin 2014



- ECTRON DENSITY AND CURREN

Fluctuations of electron density are governed by fluctuations of local Ricci curvature

0p = 47TR
Projected static structure factor computation reproduces a classic result
S(k) = 277 (0p_sdpi) = S b +
This is to be compared with the general result
s(k) = 12Uk +

Leading to identification

2|¢| = |S — 1|| vanishes for IQH

AG, Son 2017



CANONICAL QUANTIZATION

Turn off electric field

VS o VS = 5., 0
%Adw—%BwO—gpea €3

87

ot °*
From the action we read the commutation relations

- : 9
o Z_5;ea55(x—x’)
_ _ Y.

™
Q
N\
S
N—"
>
Q.
N\
x\
N—"
|

Haldane 20l Appeared in Verlinde 1989



GMP ALGEBRA

Components of intrinsic metric do not commute with each other

These relations define sl(2,R) Lie algebra

The density operators form the W algebra = small k limit of the GMP

6p(k),dp(q)] = il*(k x q)dp(k + q)

Bimetric theory reproduces essential FQH features beyond topological order

AG, Son 2017



GENERAL STRUCTURE

Vg A é A A A
L= —Adw wdw — H|gi;; ij)
T \ A /
DG — type terms Non-universal Hamiltonian,

depends on interactions

Gravitational Chern-Simons term breaks sl(2,R) butrespects Weso for density

Higher spin
fluctuation?
i AG, Son 20[7

This term turns on when the metric gij IS INhomogeneous

00
00



SUMMARY

* Projected static structure factor up to |k|°
* Dispersion relation of the spin-2 mode up to \k\z

*x Absence of the spin-2 mode

* Manifest Particle-Hole duality

* Girvin-MacDonald-Platzman algebra holds up to |k|*
* DC Hall conductivity to |k|?

* Hall viscosity to |k|?

* Hints at rich structure of the full W, theory

* Agrees with Dirac theory for Jain states close to 1/2

Nquyen, AG, Son 2017 AG, Son 2017



PROBING THE GEOMETRIC DEGREE OF FREE

Quantitatively, we suddenly switch on a spin-2 perturbation

Liu, AG, Papic (2018)

HHH—FVD’Q

DOM




GLOBAL QUENCH
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GLOBAL QUENCH

[\ v = 1/2 bosons, contact interaction

:
+ N=9 X N=11 |
o N=10 o N=12 |

6 7 8 9 10 11 12 13 14 15



PROBING THE GEOMETRIC DEGREE OF FREEDOM

Dynamics is obtained via solving the EoM of bimetric theory in tilted magnetic field

. [cosh@ + cos@sinh @ sin ¢ sinh ()
Sij = sin ¢ sinh Q) cosh Q — cos ¢ sinh Q)

Can excite higher-spin modes by switching on a spin-4 perturbation

Liu, AG, Papic (2018)



OPEN PROBL

Higher spin degrees of freedom and anisotropy
Bimetric theory of Fractional Chern Insulators
Multi-layer Fractional Quantum Hall states
Neutral fermionic collective mode in 5/2 state

Higher spin formulation of CFL theory

Geometric theory of Quantum Hall liquid crystalses;

Relation to geometric structure of Fracton order

-MS

““quantum metric”

FCI

Bi-layer FQH

Neutral Fermion in 5/2 stat_e

\. Bosonic

Higher spin modes

U+3

15| N2 Y
\_‘,\.m?-—-—-
1} 2\
| MR mode
o L NF mode
0 0.5 1.5 2

| “wom
= 8 0
3 N=12V 14 A
z 2 16O 180
5 >
%
A
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fermion (c)
T T '
0 1 2

FQH liquid crystal

Isotropic

'1‘ Wigner
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WHAT ELS

- CAN BIM

*x Projected stal

ic structure factor up

* Dispersion re

* Absence of the GMP mode and nematic transi

RIC TH

o |k|°

ation of the GMP mod

*x Manifest Particle-Hole duality

* Girvin-MacDonald-P

* DC Hall cond

* Hall viscosity

uctivity to |k|?
to |k|?

eupto |k

-ORY DO

2

* Hints at rich structure of the full W4, theory

ion in IQH

atzman algebra holds up to |k|*

AG, Son 2017
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COMPOSITE FERMI LIQUID

N

States at filling v = N1 |IQH of composite fermions at veg = IV

Can be treated via Fermi liquid theory when N is large

Semi-classically the d.o.f. are multipolar distortions of the Fermi surface

Ug U+1 non-dynamical
Dilation Translation

U492 U4-3 U449 <. U4n, .. dynamical
Shear

“"Higher spin” area preserving deformations

Golkar Nguyen Roberte Son 2016



COMPOSITE FERMI LIQUID IN SMA

Hamiltonian

() k F
}j/f (14 Fo)un (x)u—n (%),
\ Phenomenological

CCR “Landau parameters”

2T

k2 (nb5n+m 0 — tkFpOp4+m, 10z ikp5n+m,_1az)5(x —x')

[Un (%), Um (x')] =
All modes are gapped at A, =n(l+ Fp)we

Thelimit A, <« A, forall n>3 isthe SMA

Only dynamics of shear distortions u+s remains

Same as linearized

4 bimetric
un(x), u2(x)] = gm0k —x )

Nguyen, AG, Son [n Progregg



COMPOSITE FERMI LIQUID IN SMA |

Effective Lagrangian for the quadrupolar (spin-2) mode

, 2N + 1 ' N2(2N + 3)¢? 2N + 1)w, 2N +1 052
Lsva = S UgU_2 + . (2N +3) Us AU_g — Co(2N + 1) UgU_2 + Co(2N + o Us Au_o
2 2w 2 127 2T 2T

coincides with the linearized bimetric theory

2N +1 N?(2N + 3 7 - 2 12
_ N A ( +)wwhfﬁhww—ﬂ —%ﬁ—r}

Lim
b 167 967 9

Bimetric theory prescribes coupling of the CFL to curved space

Conjecture:

Bimetric theory is the geometric non-linear completion of the CFL
in the SMA.

What about beyond SMA 7




GIRVIN - MAC
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Warning: not standard presentation

The LLL generators of W

LLL

Rotation

/

LLL Shears,

/\

D - PLA

dalre

spin-2 operators

/MAN MO

Nel

1=1

Operators {Lo,0,L1,—1,L—-1,1} form sl(2,R) algebra

The projected density operator is expanded in L, m

Bk

plk) = e

m,n

1.1 1. M
Cnmk K [Jn—l,m—l

L, m create intra-LL state at momentum k

D

En,’m — E :Z?—I_la;?_'_l



GIRVIN - MACDONALD - PLATZMAN MOD

At long wave-lengths the GMP mode is

Kk k?
p(k)|0) = gﬁ—l,l | 3 Li_14+...1]0)

The GMP state p(k)|0) is a shear distortion at small k

ForliQH H =0 — p(k)|0) isa0 energy state
Consider two-body Hamiltonian ~ H =) V(k)p(—k)p(k)
k

Since |[H,p(k)| #0 the shear distortion costs energy

Atsmall k GMP mode is a gapped, propagating, shear
distortion of the FQH fluid



ORBITAL SPIN

In the remainder of the talk | will use the term orbital spin”.

In magnetic tield electrons quickly move in cyclotron orbits

B
We = < >
el magnetic length £

We consider the limit  me — O

“Orbital spin” describes the coupling of the low energy
physics to spatial geometry

Read 2009 Wen Zee 1992



WHAT ELSE CAN BIMETRIC THEORY DO ¢

Schematic Lagrangian up to three derivatives

el? - m (1 y ° ~ |2
Lom = 22 Adey — S odio — L5NEB - SN ER - (24097 — ——‘r—r|
b o 47Tww 4 8 2 (2939 7) al

* Projected static structure factor up to |k 0

* Dispersion relation of the GMP mode up to |k|?

*x Absence of the GMP mode and nematic transition in IQH
* Manifest LLL projection and Particle-Hole duality

* Girvin-MacDonald-Platzman algebra holds up to |k|*

* DC Hall conductivity to |k|?

* Hall viscosity to |k|?

* Hints at rich structure of the full W, theory



