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Motivations

What’s going on at the interface between two topologically ordered phases?

These predictions are based on effective low-energy approaches (”cut and
glue”), in which one forgets about the bulk.

Two questions we want to address:

Can we test these effective approaches ?

Can we characterize the interface down to the microscopic level ?

⇒ build accurate model wavefunctions for the full system
(bulk+interface)



Outline

FQH (Abelian) model states

MPS for the FQH model states

Building a variational Ansatz

Characterizing the interface



FQH (Abelian) model states



Fractional Quantum Hall effect

Landau levels (spinless case)

Cyclotron frequency : ωc = eB
m ,

Filling factor : ν = hn
eB = N

NΦ

Partial filling + interaction → FQHE

Lowest Landau level (ν < 1) :
zm exp

(
−|z |2/(4l2B)

)
N-body wave function :
Ψ = P(z1, ..., zN) exp(−

∑
|zi |2/(4l2B))

Landau gauge and cylinder : ring-like
orbital centered around ky l

2
B , ky

quantized.



The Laughlin wave function

A (very) good approximation of the ground state at ν = 1
3

ΨL(z1, ...zN) =
∏
i<j

(zi − zj)
3e−

∑
i
|zi |2
4l2

Excitations with fractional charge e
3 and fractional statistics

Edge excitations

A chiral U(1) boson with a
dispersion relation E ' 2πv

L n

The degeneracy of each energy
level is given by the sequence
1, 1, 2, 3, ....

(a) E = 0

(b) E = 1

(c) E = 1

(d) E = 2

(e) E = 2



Entanglement entropy and entanglement spectrum

Start from a quantum state |Ψ〉
Create a bipartition of the system into
A and B

Reduced density matrix
ρA = TrB |Ψ〉 〈Ψ|
Entanglement Hamiltonian :
ρA = e−Hent

A B
1D:

A B

2D:

L

The eigenvalues of Hent are the entanglement energies {ξi}.
Entanglement entropy SA = −TrA [ρA ln ρA], area law for gapped
systems.

2d topological phase → SA ∼ αL− γ.

Topological term γ = ln
(
D
da

)
, a signature of the topological order.



FQH : (Orbital) entanglement spectrum

FQHE on a cylinder (Landau gauge): orbitals are labeled by ky , rings

at position
2πky
L l2B

Divide your orbitals into two groups A and B, keeping Norb,A orbitals :
orbital cut ' real space cut (fuzzy cut)
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Laughlin state N = 12, half cut
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OES Laughlin N=12, NA=6 on a cylinder L=15

Ky

Fingerprint of the edge mode (edge mode counting) can be read from
the ES. ES mimics the chiral edge mode spectrum.

For FQH model states, nbr. levels is exp. lower than expected.



A simple (still rich) example

We consider the (bosonic) case interfacing the Halperin (221) and the
Laughlin ν = 1/2 phases.

Halperin (221)
SU(3)1

Spinful, ν↑ = ν↓ = 1/3.

e/3 excitations.

Two U(1) chiral edge modes
(charge and spin).

Laughlin ν = 1/2
SU(2)1

Spinless, ν↑ = 0, ν↓ = 1/2.

e/2 excitations.

One U(1) chiral edge mode
(charge).



A microscopic model

Hint =

∫
d2~r

 ∑
σ,σ′=↑,↓

: ρσ(~r)ρσ′(~r) :

+ µ↑(~r)ρ↑(~r)

Use the chemical potential µ↑(~r) to polarize half of the system.

Laughlin ν = 1/2 is the interaction densest polarized zero energy state.

Halperin (221) is the interaction densest unpolarized zero energy state.

The two quantum liquids are sewed together by the interaction.

What shall we observe at the interface ? A single gapless mode described
by a free chiral boson (Haldane, PRL 94).



MPS for the FQH model states



Model states and CFT

A large set of model wavefunctions can be written as a CFT correlator
(Laughlin, Moore-Read, Read-Rezayi, Halperin...).

Ψ(z1, · · · , zN) = 〈V (z1) · · ·V (zN)Obg〉

with electron operator V (z) in some chiral 1 + 1 CFT and Obg is the
background charge.

Bulk-edge correspondence : The CFT used to describe the (gapped)
bulk is identical to the CFT that describes the (gapless) edge

Laughlin state : SU(2)1

V (z) =: exp(i
√
mΦ(z)) :, where Φ(z) is a free chiral boson

〈Φ(z1)Φ(z2)〉 = − log (z1 − z2)
〈V (z1) · · ·V (zN)〉 =

∏
i<j(zi − zj)

m

Halperin state : Two free chiral bosons (SU(3)1).



Matrix Product States

Any state can be written as

|Ψ〉 =
∑
{mi}

〈αL|A[m1]...A[mNorb
] |αR〉 |m1, ...,mNorb

〉

{A[m]} is a set of χ× χ matrices

(αl , αr ) encode the boundary conditions for an open system.

The A
[m]
α,β matrices have two types of indices

[m] is the physical index (m ∈ {0, 1} for fermions, m ∈ N for bosons, m ∈ {↑, ↓} for spins ...)

(α, β) are the bond indices (auxiliary space), ranging from 1, ..., χ.

The bond dimension χ is of the order of expSA
⇒ for 2d gapped phases, it grows exponentially with L.
An exponential improvement over the exp(surface) of ED...



Starting from a model wavefunction given by a CFT correlator

Ψ(z1, · · · , zN) = 〈u|Ob.c.V (z1) · · ·V (zN)|v〉

and expanding V (z) =
∑

n V−nz
n, one finds (up to orbital normalization)

c(m1,··· ,mn) = 〈u| Ob.c.
1√
mn!

Vmn
−n · · ·

1√
m2!

Vm2
−2

1√
m1!

Vm1
−1 |v〉

This is a site/orbital dependent MPS

c(m1,··· ,mn) = 〈u| Ob.c.B
[mn](n) · · ·B [m2](2)B [m1](1) |v〉

with matrices at site/orbital j (including orbital normalization)

B [m](j) =
e( 2π

L
j)

2

√
m!

(V−j)
m



Translation invariant MPS

A relation of the form B [m](j) = U−1B [m](j − 1)U yields

B [m](j) = U−jB [m](0)U j

and then

B [mn](n) · · ·B [m1](1) = U−n × B [mn](0)U · · ·B [m1](0)U

This is a translation invariant MPS, with matrices

A[m] = B [m](0)U



Translation invariant MPS on the cylinder

Site independant MPS

B [m](j) =
e( 2π

L
j)

2

√
m!

(V−j)
m ⇒ A[m] =

1√
m!

(V0)m U

where U is the operator is (Zaletel and Mong (2012))

U = e−
2π
L
H−i
√
νϕ0

where

ϕ0 is the bosonic zero mode (e−i
√
νϕ0 shifts the electric charge by ν)

H is the CFT cylinder Hamiltonian : H = 2π
L L0

V0 is the zero mode of V (z)

auxiliary space = CFT Hilbert space
infinite bond dimension :/

Extension to spinfull FQH : V. Crépel et al., PRB 97, 165136 (2018)



Truncation of the auxiliary CFT basis

The natural cut-off is the total conformal dimension → Pmax.

Truncation over the momentum in the OES.

In finite size, the truncated MPS becomes exact for Pmax large enough.

DMRG : cut-off in ξ (remove
the smallest weight of ρA).

MPS : cut-off in momentum.

Equivalent if the ES mimics the
chiral edge mode spectrum.  0
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Building a model state for the Halperin/Laughlin interface



MPS and variational Ansatz

We know the exact MPS for Halperin B [n] and Laughlin A[n].

Brutal gluing : 〈αL| · · ·B [m−2]B [m−1]A[m0]A[m1] · · · |αR〉

Does B [m−1]A[m0] make any sense?

Yes : conformal embedding !

More generally SU(2)k ↪→ SU(3)k



Density

Translation invariance along the cylinder perimeter.

We recover the spin up and down densities in the bulk both on the
Halperin and Laughlin side.

Finite size effects (with respect to L) quickly vanish.

Width of interface ' 5lB



Topological Entanglement Entropy

We extract the TEE γ from the derivative SA − L∂LSA = −γ.

Good agreement with the predicted values deep in the bulks (-0.549
and -0.347).



Topological Entanglement Entropy

Up to a small oscillations (finite size effects more important for
subleading terms), a rather smooth transition between the two bulk
TEE.

No sign of the gapless mode (as recently predicted by Santos et al.
arXiv:1803.04418).



Area law at the transition

Does we still satisfy the area law at the interface?

Yes (but hard to spot any deviation with such a limited range).



Characterizing the interface



Extracting c : Levin-Wen cut

α(x1)`+ α(x2)(L− `) + 2

∫ x2

x1

α(u)du︸ ︷︷ ︸
Area Law

+
c

6
log

[
sin

(
π`

L

)]
︸ ︷︷ ︸

Critical Mode

+K (w)

K (w) contains corrections to the area law, corner
contributions,...

Using a Levin-Wen cut to focus on the critical
contribution.

SA(`,w) = 2
c

6
log

[
L

π
sin

(
π`

L

)]
+ f (w)

To get rid of f (w) (including the TEE), we
compute SA(`,w)− SA(L/2,w)



Extracting c : Levin-Wen cut

Fitted central charge c = 0.987(1).



What about the bulk?



Compactification radius, fractional charge

Central charge is only part of the information.

Mutual information → full partition function of the CFT but hard to
evaluate.

Compactification radius ↔ edge mode charge.

Directly measure the charge along the edge.

Play with the MPS boundary conditions.



Compactification radius, fractional charge

Excitations with a e/6 charge (e/6 = e/2− e/3).



Is it a good variational wavefunction?

It has all the features that we expect but does it capture the
microscopic model low energy properties?

Overlap with ED : 4 ↑ +9 ↓ particles, 21 orbitals → 0.998 (Hilbert
space dim ' 2.2× 108).

ED with 15 orbitals.

MPO L = 12.



Fermions : Laughlin ν = 1/3 / Halperin (332)

No conceptual difference with the bosonic example.

Transition from Laughlin ν = 1/3 to Halperin (332) at ν = 2/5.

Experimental relevance : graphene using the valley degree of freedom
(spontaneous polarization at ν = 1/3).



Conclusion

A variational ansatz to describe the interface between the Halperin and
the Laughlin liquids.

Microscopic characterization of the interface gapless mode (c and R).

This scheme can be extended to

any case where a MPS/PEPS/TN description is known on both sides.
for instance

SU(2)k+l ↪→ SU(2)k ⊗ SU(2)l

other sewing approach (e.g. superconductor).
a more generic approach ? couple the edge mode + numerical RG


