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Recently a wide class of theoretical models have been discovered
exhibiting quasiparticles with highly constrained dynamics

* Gapped phases: fracton models

* Gapless phases: higher rank symmetric U(1) gauge
theories

Challenges our understanding of phases of matter, universality, and
field theory



Gapped phases: fracton models
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Vijay, Haah, Fu PRB 94 235157 (2016)

X-Cube Model

Spin-1/2 on links of cubic lattice

Gapped
Ground states have +1 eigenvalue for every term in Hamiltonian
“Topological” degeneracy 273

Contains 0D, 1D, and 2D excitations
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One-Dimensional Excitations of X-
Cube

e, only mobile in x direction!



2D Excitations of X-Cube Model
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My, mobile in xy-plane



Immobile (OD) Excitations of X-Cube
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Immobile (OD) Excitations of X-Cube
Model
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Isolated excitations live at the corners of membrane operators

and are immobile.



Many interesting questions about gapped fracton phases:

1. What is the general theoretical framework that properly captures all the possible
phases and their properties? (c.f. Gauge theory, Unitary modular tensor category
theory )

2. Canitoccurin2+1 D, oronlyin higher dimensions? What are the restrictions on
dimensionality in space?

3. To what extent can “field theory” describe the universal properties of these
phases?

4. Nature of phase transitions from more conventional phases?

5. Possible physical realizations?



Gapless systems: higher rank symmetric U(1) gauge theories

Xu et. al, 2006,2008, 2010, 2013

Example: Rank 2, Scalar charge theory: Rasmussen et. al. 2016
Pretko 2016; Bulmash, MB, 2018

“Electric field” Eij = Eji “Gauge field” Aij = Aji

Gauss law ZaiajEij — p Az’j — A@'j — (3’7;8]-04
i,

Non-symmetric Bij _ Zab €iab0a Abi Z — ]
Rank-2 magnetic field Za#’j (3jAaj — 8aAjj) L]

H~E*>+B? w~k L~(00;40— 0:A;)* — B

Pure gauge theory is non-relativistic



Constrained dynamics of charges:
Pretko 2016

Conservation of total dipole moment:
/dS:c Tpp = /d3$ 1, 0;0;b;; =0

Motion of single charges violates conservation of dipole moment
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Isolated charges are immobile. Dipoles are mobile in all directions




Isolated charges are also strongly confined energetically

aic")’jEz-j = p = E ~ 1/]€2

HN/E%/d%l/k‘lNR

Energy cost to isolate charges by a distance Ris linearin R

Confinement due to electrostatics, not instanton effect



Field theory + matter

H = E? + B2 + Z U cos(0;0;¢ + A;;)

¥

The matter coupling is intrinsically interacting.
(and breaks continuous rotational invariance)

Therefore the theory cannot be defined perturbatively, or as a
relevant deformation of a UV fixed point

Only known definition is based on a lattice



Lattice definition: Local rotor model

H = Hpnrazwell + HHz'ggs + Hgauss

~ 1
Hifazwell = Y (hsEz‘ZI- - — COS(Bii))

.2 gg
+ Z <BfEi2j — 12 COS(BZJ)>
r,2<j g
v Hy, _ZL(I')Q_VZ (A;A 0+ pA,;;)
Higgs — - Wi < COS Ay DA
E’LZ dEfinEd on SiteS HGauss — UZ (G(E) L pLa)2
E;; for i # 3 o
J
defined on faces G(E) = Z A;AGE;;

Gauss law can be enforced as an energetic constraint



Vector charge theories:
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i oriented charges can only move in i direction

B.. — %Za#b;&i (2A2 A5 — AdApAas) i=j
T S ki [(AiARAE + AjAR Ak — ARAy) — 20 AjAR] i

H ~ E? + B? W~ k?



What is the relation between the higher rank symmetric
gapless gauge theories and gapped fracton models?

Study Higgs phases

Condense charge p excitations, U(1) = Z,
H=E>+B’+) Ucos(9;0;0 + pAi;)
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Take U — oo



I))

Rank 2 scalar charge theory becomes “conventiona
topological order upon Higgsing
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Higgs procedure: derive Zp lattice model

AZAJQ —l—pAij = 2T

Pick gauge @ — () using gauge transformation «a(r) = —6(r)/p
27 .
_ A;: |
Aij = I e = Zy (-7 = Xy
(p=2)

—UD a(r)=-U)» (-1)=2%F5  Gauss law

cos B;; = b;; > Magnetic terms = product of Z operators

E? terms > Zeemanterms h» X
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Generalize higher rank symmetric gauge theories subject to cubic
rotational symmetry

Theory Gauss’ Law Gauge transformation

mA?a 1=7

(m,n) scalar m> . A7E; + n 2 AiljEi; =p Ay — Aij — {nAz-Ajoz oy

mA;o; 1=
izj Dilij = p; Aij = Aij — 0
n(Aia; + Aja;) 1 F#

(m,n) vector mA;Ej; +2n)

If m/n is irrational, then cannot add B to Hamiltonian while
respecting compactness of A (B~ B+ 2pim ~ B + 2 pin)

(m,n) scalar charge theory:
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Note: (0,1) scalar charge theory is equivalent to resonating quantum

plaguette model
Xu, Wu 2008

Pankov, Moessner, Sondhi 2007

o H=—t Y {JA(B+|B)C|+|B)C|+hec)
each cube

N = s FVOY (A BB HOE), )
each cube

Possible relevance to SU(4) spins on cubic lattice
(0,1) scalar charge theory in (3+1)D is unstable to instantons

(m,n) scalar charge theory for m, n > 0 is probably stable



Two-dimensional models

U(1) Charge Type (m,n) Higgs Phase

d = 2 scalar

(2r+1,2s+1) Z3 topological order

(2r,2s + 1) Trivial
(2r +1,2s 4+ 2) Trivial
(1,0) Z3 topological order

d = 2 vector
(2r+1,2s+1) Z3 topological order
(2r +2,2s+1)  Z3 topological order
(2r + 1, 2s) Trivial
(0,1) Trivial



Three-dimensional models

U(1) Charge Type (m,n) Higgs Phase

d = 3 scalar

(2r+1, 2s+1) Z3 topological order
(2r,2s + 1) X-Cube fracton order
(2r +1,2s + 2) Trivial

(1,0) Z5 topological order

d = 3 vector

(2r+1, 2s+ 1) 75 topological order
(4r + 2, 25+ 1) Zo topological order
(4r, 2s + 1) Trivial
(2r + 1, 2s) Trivial




(2r, 2s+1) scalar charge theory

Higgs phase = X-cube model

/
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For r > 0, this is a stable, gapless phase which transitions to a
gapped fracton model



(2r+1, 2s+1) scalar charge Higgs theory

b b,, b,, by, byy by,
Q’ Applying Z.. at each site creates two
’Q particles separated by two lattice spacings
b 0 b — 8 possible distinct types of e particles

Applying Z; at each face creates 4 excitations (or convert 3 into 1)
—> 4 distinct types of e particles left = Z,* topological order

Large h; limit freezes out face spins = now we really have 8 distinct
types of charges = Z,8 topological order



Large h, limit = freeze out all site spins

H = Z a -+ Z bij X-cube model

Note: continuous rotational symmetry is completely incompatible
with realizing the X-cube phase



Schematic phase diagram for (2r+1, 2s+1) scalar charge

Higgs theory

h¢

Zg topological Paramagnet
order (confined)
Zg topological
order X-Cube

(Higgs)

Direct transition to X-cube
theory?

Nature of transition?



U(1) higher rank symmetric gauge theories = constrained dynamics

Some of them Higgs to gapped fracton models
(e.g. (0,1) scalar charge theory)

The others exhibit a certain constrained dynamics with no
discrete Z, analog. (e.g. (1,1) scalar charge theory)

Generalization to other types of fracton models, like Haah’s code?



Even more generalized U(1) gauge theories

In general, the Gauss law specifies the geometric configuration
of charges created by local operators

; oy
i i i S -
+m ! -2m i +m i iAay
---------- L, S “o
: - €Z TT i
I -

Alternatively, given a geometrical configuration of charges, we can
define a corresponding Gauss law



Even more generalized U(1) gauge theories

Consider a single pair of conjugate variables

[A1(r), By (r)] = i6”(r — 1)

3
Consider the Gauss law  p(r) = Z 0; F1(r)
1=1

Gauge transformation A; — A, + ZZ 0;

O — O—«

/’ Lattice regularization:
p(x)fao = —3E1(x) + Y1y Ei(r + aoks)
‘. Local operators create charges in shape of

Tt a pyramid




But, there is no gauge-invariant “magnetic field” that we can define.

Introduce another set:

[As(r), Es(r)] = i8°(r — 1)

DQEQZIO DQ—aOZé?@ Z
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p(r)/ag = =3Ex(r) + )  Ea(r + ao(i + i;))

1<J




Combine the two allowed charge configurations:

Gauss law P = D{E1 + Do E>

D1 :Z({)i, DQ :aOZ&(’?j —2287;

1<J
Al%Al—Dla ¢—>¢—Oé
Dy =-Y.0 Dy=aoY;.;0:0;+23, 0,

Now we have a gauge-invariant F ~
magnetic field B = D1A2 — D2A1



Gauss law p=D1E1+ DoEo

Zaz, Dy=agy 0;0;—2) 0

1<J

B = DAy — DA,

Maxwell theory Ho = Z E2 + —32

2

w? = (a0)* (Siey hik; ) +5 (X, ki)

Theory has SO(2) rotational symmetry about (111) axis



This theory has infinitely many conserved quantities
Take u = (111) direction

Qr = /dudvdwf(v,w)p(u,v,w) =0

For any harmonic function:

(07 +92) f(v,w) =0



Can couple the theory to charge p matter:

H=Ha + Hwm
L? ~
Hur = ST 72132 Vicos(D;¢p — pA;)
where D1FE1+DsEs = pL
Discretize on a lattice

3.7 T iAl
HM o ZV brbr—l—x r—|—ybr—|—z

311 t t A
+V5 brbr+x+ybr+x+zbr+y+z e'*2 + H.c.

Gauge non-invariant hopping terms are forbidden because they take
the system out of the low energy subspace defined by the gauge constraint



Exponential geometrical confinement of charges

Charges can be separated by repeated application of exp(i A) operators

E ~ eR/ao

Lattice is still important — charges only appear at lattice scale

Taking a, = 0 in continuum Gauss law, then A, + 2 A; would be
gauge-invariant, which is incorrect at lattice scale

Haah 2018
D. Bulmash MB 2018



LQ
HM— ZVCOS D;o —pA;)

1=1,2

Condense charge p matter by taking V' — o0

If we discretize on a cubic lattice:

1X—X1 17t——271

H=-Y%" Al L +Zl_§_2_323| Y X+ he Z,, version of Haah'’s
— X—E3X_3 ‘IX ‘ 151 .......... ‘.1ZT spins cubic code
1X—X1  1z72t—21
~ 1 a 2
H="Hc +Hwm Hv ~ 50, Vi(Digp — pA;)

Effective field theory for Haah’s code Ha = Z E2 + —B2



General construction Geometric configuration of charges created

by local operators Gauss law
N
N geometric charge configurations
DIE;(r =
; 1 Ei(r = pa(r) M charge flavors:a=1,..., M

~

“Magnetic field” BY = Z C'lkAl where Z CFD¢ =0
[ [
When N > M, expect that it is always possible to define gauge-invariant
magnetic field (Proof for M =1, 2)
Example: ForM =1, N =2, B = D]_AQ — D2A1
1 ) 1
— Nna pa , . k\2

+> 0i(>_ D{AG + 0, A;) By,
1k

a




Mobility of charges = tiling problem

(im)mobility of charges derives from properties of tiling of the
basic set of geometric charge configurations defined by Gauss laws

The two pyramids defining U(1) Haah code theory can never be
tiled together to give only two far-separated charges




Another example: Sierpinski prism model

Consider the following charge configurations

.............

ez'Az

Yoshida 2013
D. Bulmash, MB 2018

DiE1+ Doy Es =p No global charge conservation
D1 — 8Z D2 — Cboaxay -+ 8y -+ Cbal
B = DyA; — DA

In-plane dynamics is fractal. Charges are mobile in z-direction



Another example: Sierpinski prism model
*—@

DiEi+ DosEs =p No global charge conservation
Dy =0, Dy = ap0,0, + 0, + ao_l
H=E?+ B’

w? = ag? + (k2 = 2k, ky + k2) + adk2k?

11 ) .
Amin(ky) = e low-energy p.hy5|cs
0 0™z occurs at lattice scale



U(1) model with no Z; counterpart

o en e

p= (30, —0.)E1 + (30, — 8,)Fy + (30, — 9,) Fs
Bi — EijijAk

Discretize Gauss law on cubic lattice:

p(r)/ao =Y [BEi(r + aok;) — 2E;(r)] — E1(r + ao)
— E2 (I‘ + ao)A() — Eg(r + aoy)

Charges become mobile in all three directions upon breaking U(1) gauge
symmetry down to Z,



Summary and outlook

Large class of generalized U(1) gauge field theories. Defined by specifying
geometric configurations of charge configurations.

N geometric charge configurations = N components of electric/gauge fields
Generally N > M sufficient for existence of gauge-invariant magnetic field.
Mobility of charge configurations = tiling problem for the geometric shapes
Many interesting phase diagrams. Direct transition from Z,* to X-cube?
Examples of stable gapless U(1) theories that Higgs to X-cube model

Examples of non-trivial U(1) theories (either “type I” or “type II”) with no
discrete Z, analog

How to describe other gapped fracton models from this perspective?
Chamon model; “Twisted” fracton models;
Non-Abelian fracton models obtained through layer constructions



