
Generalized	U(1)	gauge	theories	and	
subdimensional dynamics

Maissam	Barkeshli
UMD	/	JQI

Daniel	Bulmash,	MB,	Phys.	Rev.	B	97,	235112	(2018)
D.	Bulmash,	MB,	1806.01855

Perspectives	in	Topological	phases:	From	
Condensed	Matter	to	High-Energy	Physics	

Quy Nhon,	Vietnam
7/19/2018



Recently	a	wide	class	of	theoretical	models	have	been	discovered
exhibiting	quasiparticles	with	highly	constrained	dynamics

• Gapped	phases:	fracton models

• Gapless	phases:	higher	rank	symmetric	U(1)	gauge				
theories

Challenges	our	understanding	of	phases	of	matter,	universality,	and
field	theory



Gapped	phases:	fracton models
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Chamon model.	Chamon (2005)
Bravyi,	Leemhuis,	Terhal (2010)
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Cubic	Code,	Haah (2011)
Bravyi-Haah (2011)

Sierpinski prism	model.	
Yoshida	(2013)

H =
X General	classification

of	(gapped)	commuting	
Pauli	Hamiltonians

Haah 2012,	Yoshida	2013



X-Cube	Model

Spin-1/2	on	links	of	cubic	lattice

+ + +

• Gapped
• Ground	states	have	+1	eigenvalue	for	every	term	in	Hamiltonian
• “Topological”	degeneracy	2"#$%

• Contains	0D,	1D,	and	2D	excitations

Vijay,	Haah,	Fu	PRB	94	235157	(2016)



One-Dimensional	Excitations	of	X-
Cube

Creates	pair	of	𝑒' Creates	pair	of	𝑒(

+ + +



One-Dimensional	Excitations	of	X-
Cube

𝑒' only	mobile	in	x	direction!



2D	Excitations	of	X-Cube	Model

𝑚'* mobile	in	xy-plane



Immobile	(0D)	Excitations	of	X-Cube	
Model



Immobile	(0D)	Excitations	of	X-Cube	
Model

Isolated	excitations	live	at	the	corners	of	membrane	operators	
and	are	immobile.



Many	interesting	questions	about	gapped	fracton phases:

1. What	is	the	general	theoretical	framework	that	properly	captures	all	the	possible	
phases	and	their	properties?	(c.f.	Gauge	theory,	Unitary	modular	tensor	category	
theory	)

2. Can	it	occur	in	2+1	D	,	or	only	in	higher	dimensions?	What	are	the	restrictions	on	
dimensionality	in	space?

3. To	what	extent	can	“field	theory”	describe	the	universal	properties	of	these	
phases?

4. Nature	of	phase	transitions	from	more	conventional	phases?

5. Possible	physical	realizations?



Gapless	systems:	higher	rank	symmetric	U(1)	gauge	theories

X

i,j

@i@jEij = ⇢

Example:	Rank	2,	Scalar	charge	theory:

Gauss	law

Eij = Eji“Electric	field” Aij = Aji“Gauge	field”

Non-symmetric
Rank-2	magnetic	field

Pure	gauge	theory	is	non-relativistic

Aij ! Aij � @i@j↵

Xu	et.	al,	2006,2008,	2010,	2013
Rasmussen	et.	al.	2016	
Pretko 2016;	Bulmash,	MB,	2018

H ⇠ E2 +B2 L ⇠ (@i@jA0 � @tAij)
2 �B2! ⇠ k



Constrained	dynamics	of	charges:

Z
d
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3
xxk@i@jEij = 0

Conservation	of	total	dipole	moment:

Motion	of	single	charges	violates	conservation	of	dipole	moment

Isolated	charges	are	immobile.	Dipoles	are	mobile	in	all	directions

Pretko 2016

+ -



Isolated	charges	are	also	strongly	confined	energetically

@i@jEij = ⇢ ) E ⇠ 1/k2

H ⇠
Z

E2 ⇠
Z

d3k 1/k4 ⇠ R

Energy	cost	to	isolate	charges	by	a	distance	R	is	linear	in	R

Confinement	due	to	electrostatics,	not	instanton	effect



Field	theory	+	matter

The	matter	coupling	is	intrinsically	interacting.	
(and	breaks	continuous	rotational	invariance)

Therefore	the	theory	cannot	be	defined	perturbatively,	or	as	a	
relevant	deformation	of	a	UV	fixed	point	

Only	known	definition	is	based	on	a	lattice

H = E2
+B2

+

X

ij

U cos(@i@j�+Aij)



Lattice	definition:	Local	rotor	model

defined	on	sitesEii

Eij for i 6= j
defined	on	faces G(E) =

X

ij

�i�jEij

Gauss	law	can	be	enforced	as	an	energetic	constraint



Vector	charge	theories:

i oriented	charges	can	only	move	in	i direction

! ⇠ k2H ⇠ E2 +B2



What	is	the	relation	between	the	higher	rank	symmetric	
gapless	gauge	theories	and	gapped	fracton models?	

Study	Higgs	phases

Condense	charge	p	excitations,	U(1)	à Zp

Take	 U ! 1

H = E2
+B2

+

X

ij

U cos(@i@j✓ + pAij)



Rank	2	scalar	charge	theory	becomes	“conventional”	
topological	order	upon	Higgsing



Higgs	procedure:	derive	Zp lattice	model

Pick	gauge																using	gauge	transformation	✓ = 0

eiAij = Zij

(p	=	2)

Gauss	law

àMagnetic	terms	=	product	of	Z	operators

E2 terms											à Zeeman	terms	 h
X

Xij



2D	example



Generalize	higher	rank	symmetric	gauge	theories	subject	to	cubic	
rotational	symmetry

(m,n)	scalar	charge	theory:

If	m/n	is	irrational,	then	cannot	add	B	to	Hamiltonian	while	
respecting	compactness	of	A		(B	~	B	+	2pi	m	~	B	+	2	pi	n)



Note:	(0,1)	scalar	charge	theory	is	equivalent	to	resonating	quantum	
plaquette model

(0,1)	scalar	charge	theory	in	(3+1)D	is	unstable	to	instantons

(m,n)	scalar	charge	theory	for	m,	n	>	0	is	probably	stable

Xu,	Wu	2008
Pankov,	Moessner,	Sondhi 2007

Possible	relevance	to	SU(4)	spins	on	cubic	lattice



Two-dimensional	models



Three-dimensional	models



H =
X

a+
X

bij

(2r,	2s+1)	scalar	charge	theory	

Higgs	phase	à X-cube	model

For	r	>	0,	this	is	a	stable,	gapless	phase	which	transitions	to	a	
gapped	fracton model



(2r+1,	2s+1)	scalar	charge	Higgs	theory

Applying	Zij at	each	face	creates	4	excitations	(or	convert	3	into	1)

à4	distinct	types	of	e	particles	left	à Z24 topological	order

Large	hf limit	freezes	out	face	spins	à now	we	really	have	8	distinct	
types	of	charges	à Z28 topological	order

Applying	Zii at	each	site	creates	two	
particles	separated	by	two	lattice	spacings
à8	possible	distinct	types	of	e	particles



Large	hs limit	à freeze	out	all	site	spins

H =
X

a+
X

bij X-cube	model

Note:	continuous	rotational	symmetry	is	completely	incompatible	
with	realizing	the	X-cube	phase



Schematic	phase	diagram	for	(2r+1,	2s+1)	scalar	charge	
Higgs	theory

Direct	transition	to	X-cube	
theory?

Nature	of	transition?



U(1)	higher	rank	symmetric	gauge	theories	à constrained	dynamics

Some	of	them	Higgs	to	gapped	fracton models	
(e.g.	(0,1)	scalar	charge	theory)

The	others	exhibit	a	certain	constrained	dynamics	with	no	
discrete	Zp analog.	(e.g.	(1,1)	scalar	charge	theory)

Generalization	to	other	types	of	fracton models,	like	Haah’s code?



Even	more	generalized	U(1)	gauge	theories

In	general,	the	Gauss	law	specifies	the	geometric	configuration
of	charges	created	by	local	operators	

m
X

i

@2
i Eii + n

X

i 6=j

@i@jEij = ⇢

Alternatively,	given	a	geometrical	configuration	of	charges,	we	can	
define	a	corresponding	Gauss	law	



Even	more	generalized	U(1)	gauge	theories

Consider	a	single	pair	of	conjugate	variables

[A1(r), E1(r)] = i�3(r� r0)

Consider	the	Gauss	law

Lattice	regularization:

Local	operators	create	charges	in	shape	of	
a	pyramid

Gauge	transformation



But,	there	is	no	gauge-invariant	“magnetic	field”	that	we	can	define.	

Introduce	another	set:

[A2(r), E2(r)] = i�3(r� r0)

D2E2 = ⇢

A2 ! A2 + (a0
X

i<j

@i@j + 2
X

i

@i)↵

⇢(r)/a0 = �3E2(r) +
X

i<j

E2(r+ a0(x̂i + x̂j))



Combine	the	two	allowed	charge	configurations:

Gauss	law

Now	we	have	a	gauge-invariant
magnetic	field



Maxwell	theory

Theory	has	SO(2)	rotational	symmetry	about	(111)	axis

Gauss	law



This	theory	has	infinitely	many	conserved	quantities

For	any	harmonic	function:

Take	u	=	(111)	direction



Can	couple	the	theory	to	charge	p	matter:

where

Discretize	on	a	lattice

+V2 b
3
rb

†
r+x̂+ŷ

b†r+x̂+ẑ

b†r+ŷ+ẑ

eiA2 +H.c.

H
M

=
X

r

V1 b
3
rb

†
r+x̂

b†r+ŷ

b†r+ẑ

eiA1

Gauge	non-invariant	hopping	terms	are	forbidden	because	they	take	
the	system	out	of	the	low	energy	subspace	defined	by	the	gauge	constraint



Exponential	geometrical	confinement	of	charges

Charges	can	be	separated	by	repeated	application	of	exp(i A)	operators

E ⇠ eR/a0

Haah 2018
D.	Bulmash MB	2018

Lattice	is	still	important	– charges	only	appear	at	lattice	scale

Taking	a0 à 0	in	continuum	Gauss	law,	then	A2 +	2	A1 would	be	
gauge-invariant,	which	is	incorrect	at	lattice	scale



Condense	charge	p	matter	by	taking	

If	we	discretize	on	a	cubic	lattice:

Zp version	of	Haah’s
cubic	code

V ! 1

Effective	field	theory	for	Haah’s code



General	construction Geometric	configuration	of	charges	created	
by	local	operators																							Gauss	law

N	geometric	charge	configurations
M	charge	flavors	:	a	=	1,...,	M

NX

l=1

Da
l El(r = ⇢a(r)

Al ! Al � D̃a
l ↵

a

“Magnetic	field” where

When	N	>	M,	expect	that	it	is	always	possible	to	define	gauge-invariant
magnetic	field	(Proof	for	M	= 1,	2)

Example:	For	M		=	1,	N	=	2,	 B = D̃1A2 � D̃2A1



(im)mobility	of	charges	derives	from	properties	of	tiling of	the	
basic	set	of	geometric	charge	configurations	defined	by	Gauss	laws

The	two	pyramids	defining	U(1)	Haah code	theory	can	never	be	
tiled	together	to	give	only	two	far-separated	charges

Mobility	of	charges	=	tiling	problem



Another	example:	Sierpinski prism	model

Consider	the	following	charge	configurations

D1E1 +D2E2 = ⇢

D1 = @z

No	global	charge	conservation

Yoshida	2013
D.	Bulmash,	MB	2018

In-plane	dynamics	is	fractal.	Charges	are	mobile	in	z-direction



Another	example:	Sierpinski prism	model

D1E1 +D2E2 = ⇢

D1 = @z

No	global	charge	conservation

H = E2 +B2

low-energy	physics
occurs	at	lattice	scale



U(1)	model	with	no	Zp counterpart

Charges	become	mobile in	all	three	directions	upon	breaking	U(1)	gauge	
symmetry	down	to	Zp

Discretize	Gauss	law	on	cubic	lattice:



Summary	and	outlook

• Large	class	of	generalized	U(1)	gauge	field	theories.	Defined	by	specifying	
geometric	configurations	of	charge	configurations.

N	geometric	charge	configurations	à N	components	of	electric/gauge	fields

Generally	N	>	M	sufficient	for	existence	of	gauge-invariant	magnetic	field.

• Mobility	of	charge	configurations	=	tiling	problem	for	the	geometric	shapes

• Many	interesting	phase	diagrams.	Direct	transition	from	Z24 to	X-cube?	

• Examples	of	stable	gapless	U(1)	theories	that	Higgs	to	X-cube	model

• Examples	of	non-trivial	U(1)	theories (either	“type	I”	or	“type	II”)	with	no	
discrete	Zp analog

• How	to	describe	other	gapped	fracton models	from	this	perspective?
Chamon model;	“Twisted”	fracton models;
Non-Abelian	fracton models	obtained	through	layer	constructions


